3 resultados para INVERSION ASYMMETRY

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retinitis pigmentosa 2 (RP2) gene is responsible for up to 20% of X-linked retinitis pigmentosa, a severe heterogeneous genetic disorder resulting in progressive retinal degeneration in humans. In vertebrates, several bodies of evidence have clearly established the role of Rp2 protein in cilia genesis and/or function. Unexpectedly, some observations in zebrafish have suggested the oocyte-predominant expression of the rp2 gene, a typical feature of maternal-effect genes. In the present study, we investigate the maternal inheritance of rp2 gene products in zebrafish eggs in order to address whether rp2 could be a novel maternal-effect gene required for normal development. Although both rp2 mRNA and corresponding protein are expressed during oogenesis, rp2 mRNA is maternally inherited, in contrast to Rp2 protein. A knockdown of the protein transcribed from both rp2 maternal and zygotic mRNA results in delayed epiboly and severe developmental defects, including eye malformations, that were not observed when only the protein from zygotic origin was knocked down. Moreover, the knockdown of maternal and zygotic Rp2 revealed a high incidence of left-right asymmetry establishment defects compared to only zygotic knockdown. Here we show that rp2 is a novel maternal-effect gene exclusively expressed in oocytes within the zebrafish ovary and demonstrate that maternal rp2 mRNA is essential for successful embryonic development and thus contributes to egg developmental competence. Our observations also reveal that Rp2 protein translated from maternal mRNA is important to allow normal heart loop formation, thus providing evidence of a direct maternal contribution to left-right asymmetry establishment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deep seismic reflection profile Western Approaches Margin (WAM) cuts across the Goban Spur continental margin, located southwest of Ireland. This non-volcanic margin is characterized by a few tilted blocks parallel to the margin. A volcanic sill has been emplaced on the westernmost tilted block. The shape of the eastern part of this sill is known from seismic data, but neither seismic nor gravity data allow a precise determination of the extent and shape of the volcanic body at depth. Forward modelling and inversion of magnetic data constrain the shape of this volcanic sill and the location of the ocean-continent transition. The volcanic body thickens towards the ocean, and seems to be in direct contact with the oceanic crust. In the contact zone, the volcanic body and the oceanic magnetic layer display approximately the same thickness. The oceanic magnetic layer is anomalously thick immediately west of the volcanic body, and gradually thins to reach more typical values 40 km further to the west. The volcanic sill would therefore represent the very first formation of oceanic crust, just before or at the continental break-up. The ocean-continent transition is limited to a zone 15 km wide. The continental magnetic layer seems to thin gradually oceanwards, as does the continental crust, but no simple relation is observed between their respective thinnings.