2 resultados para INDICATOR SPECIES ANALYSIS

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rocky Basque coast presents an interest both in terms of biogeography and its patrimonial situation, alongside its habitats, fauna and flora. The aim of the BIGORNO project (Intertidal Biodiversity of the south of the Bay of Biscay and Observation for New research and Monitoring for decision support), financed by the Agency of Marine Protected Areas (AAMP) and the Departmental Council (CD 64), is to respond to significant deficiencies on biocenosis in the southern marine subregion “Bay of Biscay”. Investigations carried out in the WFD, since 2008, constitute an important basis of work for integration of fauna. Field studies undertaken since 2015 consisting of a sampling design suited to the substrates heterogeneity and the presence of microhabitats were established on an intertidal area specifically on a "Boulder fields" habitat. Assessment was undertaken by sampling quadrats of 0.1 m² drawn randomly from a spatially stratified sampling plan. Our study aims for a better understanding of stratification of this habitat and allowed us to highligh tindicator taxa of the "Boulder fields" habitat. Functions included in the package indicspecies (CRAN) were used to conduct indicator species analysis and to assess the significance of the relationship between taxa or taxa combinations and the habitat. It is therefore possible to describe some species or species groups which are specific to boulder fields through the assessment of their functional traits and local biodiversity. These various analyses allow for a sustainable way of monitoring the Basque intertidal rocky shore.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An accurate amplified fragment length polymorphism (AFLP) method, including three primer sets for the selective amplification step, was developed to display the phylogenetic position of Photobacterium isolates collected from salmon products. This method was efficient for discriminating the three species Photobacterium phosphoreum, Photobacterium iliopiscarium and Photobacterium kishitanii, until now indistinctly gathered in the Photobacterium phosphoreum species group known to be strongly responsible for seafood spoilage. The AFLP fingerprints enabled the isolates to be separated into two main clusters that, according to the type strains, were assigned to the two species P. phosphoreum and P. iliopiscarium. P. kishitanii was not found in the collection. The accuracy of the method was validated by using gyrB-gene sequencing and luxA-gene PCR amplification, which confirmed the species delineation. Most of the isolates of each species were clonally distinct and even those that were isolated from the same source showed some diversity. Moreover, this AFLP method may be an excellent tool for genotyping isolates in bacterial communities and for clarifying our knowledge of the role of the different members of the Photobacterium species group in seafood spoilage.