2 resultados para High-dimensional data visualization
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
At national and European levels, in various projects, data products are developed to provide end-users and stakeholders with homogeneously qualified observation compilation or analysis. Ifremer has developed a spatial data infrastructure for marine environment, called Sextant, in order to manage, share and retrieve these products for its partners and the general public. Thanks to the OGC and ISO standard and INSPIRE compliance, the infrastructure provides a unique framework to federate homogeneous descriptions and access to marine data products processed in various contexts, at national level or European level for DG research (SeaDataNet), DG Mare (EMODNET) and DG Growth (Copernicus MEMS). The discovery service of Sextant is based on the metadata catalogue. The data description is normalized according to ISO 191XX series standards and Inspire recommendations. Access to the catalogue is provided by the standard OGC service, Catalogue Service for the Web (CSW 2.0.2). Data visualization and data downloading are available through standard OGC services, Web Map Services (WMS) and Web Feature Services (WFS). Several OGC services are provided within Sextant, according to marine themes, regions and projects. Depending on the file format, WMTS services are used for large images, such as hyperspectral images, or NcWMS services for gridded data, such as climatology models. New functions are developped to improve the visualization, analyse and access to data, eg : data filtering, online spatial processing with WPS services and acces to sensor data with SOS services.
Resumo:
A method for systematically tracking swells across oceanic basins is developed by taking advantage of high-quality data from space-borne altimeters and wave model output. The evolution of swells is observed over large distances based on 202 swell events with periods ranging from 12 to 18 s. An empirical attenuation rate of swell energy of about 4 × 10−7 m−1 is estimated using these observations, and the nonbreaking energy dissipation rates of swells far away from their generating areas are also estimated using a point source model. The resulting acceptance range of nonbreaking dissipation rates is −2.5 to 5.0 × 10−7 m−1, which corresponds to a dissipation e-folding scales of at least 2000 km for steep swells, to almost infinite for small-amplitude swells. These resulting rates are consistent with previous studies using in-situ and synthetic aperture radar (SAR) observations. The frequency dispersion and angular spreading effects during swell propagation are discussed by comparing the results with other studies, demonstrating that they are the two dominant processes for swell height attenuation, especially in the near field. The resulting dissipation rates from these observations can be used as a reference for ocean engineering and wave modeling, and for related studies such as air-sea and wind-wave-turbulence interactions.