2 resultados para Greenhouse gas balance

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Interglacials, including the present (Holocene) period, are warm, low land ice extent (high sea level), end-members of glacial cycles. Based on a sea level definition, we identify eleven interglacials in the last 800,000years, a result that is robust to alternative definitions. Data compilations suggest that despite spatial heterogeneity, Marine Isotope Stages (MIS) 5e (last interglacial) and 11c (similar to 400ka ago) were globally strong (warm), while MIS 13a (similar to 500ka ago) was cool at many locations. A step change in strength of interglacials at 450ka is apparent only in atmospheric CO2 and in Antarctic and deep ocean temperature. The onset of an interglacial (glacial termination) seems to require a reducing precession parameter (increasing Northern Hemisphere summer insolation), but this condition alone is insufficient. Terminations involve rapid, nonlinear, reactions of ice volume, CO2, and temperature to external astronomical forcing. The precise timing of events may be modulated by millennial-scale climate change that can lead to a contrasting timing of maximum interglacial intensity in each hemisphere. A variety of temporal trends is observed, such that maxima in the main records are observed either early or late in different interglacials. The end of an interglacial (glacial inception) is a slower process involving a global sequence of changes. Interglacials have been typically 10-30ka long. The combination of minimal reduction in northern summer insolation over the next few orbital cycles, owing to low eccentricity, and high atmospheric greenhouse gas concentrations implies that the next glacial inception is many tens of millennia in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The air-sea flux of greenhouse gases (e.g. carbon dioxide, CO2) is a critical part of the climate system and a major factor in the biogeochemical development of the oceans. More accurate and higher resolution calculations of these gas fluxes are required if we are to fully understand and predict our future climate. Satellite Earth observation is able to provide large spatial scale datasets that can be used to study gas fluxes. However, the large storage requirements needed to host such data can restrict its use by the scientific community. Fortunately, the development of cloud-computing can provide a solution. Here we describe an open source air-sea CO2 flux processing toolbox called the ‘FluxEngine’, designed for use on a cloud-computing infrastructure. The toolbox allows users to easily generate global and regional air-sea CO2 flux data from model, in situ and Earth observation data, and its air-sea gas flux calculation is user configurable. Its current installation on the Nephalae cloud allows users to easily exploit more than 8 terabytes of climate-quality Earth observation data for the derivation of gas fluxes. The resultant NetCDF data output files contain >20 data layers containing the various stages of the flux calculation along with process indicator layers to aid interpretation of the data. This paper describes the toolbox design, the verification of the air-sea CO2 flux calculations, demonstrates the use of the tools for studying global and shelf-sea air-sea fluxes and describes future developments.