2 resultados para Gambling on Indian reservations

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The flanks of the Southeast Indian Ridge are characterized by anomalously low subsidence rates for the 0-25 Ma period: less than 300 m Ma(-1/2) between 101 degrees E and 120 degrees E and less than 260 m Ma(-1/2) within the Australian-Antarctic Discordance (AAD), between 120 degrees E and 128 degrees E. The expected along-axis variation in mantle temperature (similar to 50 degrees C) is too small to explain this observation, even when the temperature dependence of the mantle physical properties is accounted for. We successively analyze the effect on subsidence of different factors, such as variations in crustal thickness; the dynamic contribution of an old, detached slab supposedly present within the mantle below the AAD; and depletion in phi(m), a parameter here defined as the "ubiquitously distributed melt fraction" within the asthenosphere. These effects may all contribute to the observed, anomalously low subsidence rate of the ridge flanks, with the most significant contribution being probably related to the depletion in phi(m). However, these effects have a deep-seated origin that cannot explain the abruptness of the transition across the fracture zones that delineate the boundaries of the AAD, near 120 degrees E and near 128 degrees E, respectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mixed-layer salinity (MLS) budget in the tropical Indian Ocean is estimated from a combination of satellite products and in situ observations over the 2004-2012 period, to investigate the mechanisms controlling the seasonal MLS variability. In contrast with previous studies in the tropical Indian Ocean, our results reveal that the coverage, resolution, and quality of available observations are now sufficient to approach a closed monthly climatology seasonal salt budget. In the South-central Arabian Sea and South-western Tropical Indian Ocean (SCAS and STIO, respectively), where seasonal variability of the MLS is pronounced, the monthly MLS tendency terms are well captured by the diagnostic. In the SCAS region, in agreement with previous results, the seasonal cycle of the MLS is mainly due to meridional advection driven by the monsoon winds. In the STIO, contrasting previous results indicating the control of the meridional advection over the seasonal MLS budget, our results reveal the leading role of the freshwater flux due to precipitation.