4 resultados para Fronts of mud
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
1.This report presents the results of a field study conducted in the ECASA test site nOS in the Pertuis Breton, France. The site is located on the Atlantic West coasts. It is open to the bay of Biscay, but is slightly protected against westerly winds. The bay has been exploited by intertidal mussels culture for centuries. 2. Within the bay, mussels (Mytilus edulis) are cultivated either by the traditional pole technique, around the bay or on longlines in the centre of the bay. The area occupied by these longline s represents 250 ha, and the resulting annual production is 1 000 tonnes of mussels. The average depth at mid tide is of 13.8 m. The sediment is sandy, with a small fraction of mud. 3. The site is subject to several regular monitoring through the local implementation of national networks aiming at protecting the environment and marine resources, on pollutants (RNO), microbiological quality of the waters (REMI), phytoplanktonic toxic species (REPHY) and growth and mortality of molluscs (REMORA). Benthic macrofauna was studied in 1976. 4. Five sampling sations were chosen along a line, starting under the longlines, and at distances of 50, 100, 200, and 400 metres from the area cultivated. A reference station was chosen in a different direction at 2300 metres of the cultivated area. Sampling methods are described in the text. _Sediments were sampled for different analyses: grain size, content in organic matter, total organic carbon and nitrogen, and phytic pigments (chlorophyll a and phaeopigments). Redox were measured in cores. The macrofauna living into the sediment was also sampled. The water column was sampled for physical (temperature, transparency) and chemical parametres, including oxygen content, salinity, organic matter, dissolved nitrogen forms, phosphates and silicates. Results from benthic macrofauna surveys indicate that there were no significant differences between the different stations and the reference station, all being classified as slightly disturbed. The bay is submitted to freshwater runoffs from two adjacent rivers. 7. The sediment is slightly modified by the culture of bivalves. Total organic carbon, total nitrogen, Eh values and pheopigments were significantly higher under the trestles than in any other stations. Other stations often did not differ from the reference station. 8. The effects of shellfish culture on the water column were. However, it was observed a small decrease of the food available to the molluscs near the rearing 9. The DEB model was able to describe and predict adequately the growth of oysters, both in the Baie des Veys and in the Loch Creran. The parametres for its use in other environment are given, but a tuning of one parametre should be performed with the help of authors. 10. Among the indicators and models for use in are as of intertidal bivalve culture, it is recommended to use the sediment quality index, TOC (Total Organic Carbon), redox and pheopigments, in surficial sediment, AMBI for the macrofauna, chlorophyll a contents and nitrogen forms in the water column, and models describing the carrying capacity, filtration rate of molluscs, and a DEB model to predict the growth of molluscs.
Resumo:
Resuspension of the top few sediment layers of tidal mud flats is known to enhance planktonic biomass of microbiota (benthic diatoms and bacteria). This process is mainly controlled by tidal shear stress and cohesiveness of mud, and is also influenced by bioturbation activities. Laboratory experiments in a race track flume were performed to test the interactive effects of these factors on both the critical entrainment and resuspension kinetics of microbiota from silt-clay sediments from the Marennes-Oleron Bay, France. The marine snail Hydrobia ulvae was used to mimic surface bioturbation activities. As expected, the kinetics of microbial resuspension versus shear stress were largely controlled by the cohesiveness of silt-clay sediments. However, our results indicate that the effect of surface tracking by H. ulvae on microbial resuspension was clearly dependent on the interaction between sediment cohesiveness and shear velocity. Evidence was also found that microphytobenthos and bacteria are not simultaneously resuspended from silt-clay bioturbated sediments. This supports the theory that diatoms within the easily eroded mucus matrix behave actively and bacteria adhering to fine silt particles eroded at higher critical shear velocities behave passively.
Resumo:
The Pianosa Contourite Depositional System (CDS) is located in the Corsica Trough (Northern Tyrrhenian Sea), a confined basin dominated by mass transport and contour currents in the eastern flank and by turbidity currents in the western flank. The morphologic and stratigraphic characterisation of the Pianosa CDS is based on multibeam bathymetry, seismic reflection data (multi-channel high resolution mini GI gun, single-channel sparker and CHIRP), sediment cores and ADCP data. The Pianosa CDS is located at shallow to intermediate water depths (170 to 850 m water depth) and is formed under the influence of the Levantine Intermediate Water (LIW). It is 120 km long, has a maximum width of 10 km and is composed of different types of muddy sediment drifts: plastered drift, separated mounded drift, sigmoid drift and multicrested drift. The reduced tectonic activity in the Corsica Trough since the early Pliocene permits to recover a sedimentary record of the contourite depositional system that is only influenced by climate fluctuations. Contourites started to develop in the Middle-Late Pliocene, but their growth was enhanced since the Middle Pleistocene Transition (0.7–0.9 Ma). Although the general circulation of the LIW, flowing northwards in the Corsica Trough, remained active all along the history of the system, contourite drift formation changed, controlled by sediment influx and bottom current velocity. During periods of sea level fall, fast bottom currents often eroded the drift crest in the middle and upper slope. At that time the proximity of the coast to the shelf edge favoured the formation of bioclastic sand deposits winnowed by bottom currents. Higher sediment accumulation of mud in the drifts occurred during periods of fast bottom currents and high sediment availability (i.e. high activity of turbidity currents), coincident with periods of sea level low-stands. Condensed sections were formed during sea level high-stands, when bottom currents were more sluggish and the turbidite system was disconnected, resulting in a lower sediment influx.
Resumo:
In order to optimize frontal detection in sea surface temperature fields at 4 km resolution, a combined statistical and expert-based approach is applied to test different spatial smoothing of the data prior to the detection process. Fronts are usually detected at 1 km resolution using the histogram-based, single image edge detection (SIED) algorithm developed by Cayula and Cornillon in 1992, with a standard preliminary smoothing using a median filter and a 3 × 3 pixel kernel. Here, detections are performed in three study regions (off Morocco, the Mozambique Channel, and north-western Australia) and across the Indian Ocean basin using the combination of multiple windows (CMW) method developed by Nieto, Demarcq and McClatchie in 2012 which improves on the original Cayula and Cornillon algorithm. Detections at 4 km and 1 km of resolution are compared. Fronts are divided in two intensity classes (“weak” and “strong”) according to their thermal gradient. A preliminary smoothing is applied prior to the detection using different convolutions: three type of filters (median, average and Gaussian) combined with four kernel sizes (3 × 3, 5 × 5, 7 × 7, and 9 × 9 pixels) and three detection window sizes (16 × 16, 24 × 24 and 32 × 32 pixels) to test the effect of these smoothing combinations on reducing the background noise of the data and therefore on improving the frontal detection. The performance of the combinations on 4 km data are evaluated using two criteria: detection efficiency and front length. We find that the optimal combination of preliminary smoothing parameters in enhancing detection efficiency and preserving front length includes a median filter, a 16 × 16 pixel window size, and a 5 × 5 pixel kernel for strong fronts and a 7 × 7 pixel kernel for weak fronts. Results show an improvement in detection performance (from largest to smallest window size) of 71% for strong fronts and 120% for weak fronts. Despite the small window used (16 × 16 pixels), the length of the fronts has been preserved relative to that found with 1 km data. This optimal preliminary smoothing and the CMW detection algorithm on 4 km sea surface temperature data are then used to describe the spatial distribution of the monthly frequencies of occurrence for both strong and weak fronts across the Indian Ocean basin. In general strong fronts are observed in coastal areas whereas weak fronts, with some seasonal exceptions, are mainly located in the open ocean. This study shows that adequate noise reduction done by a preliminary smoothing of the data considerably improves the frontal detection efficiency as well as the global quality of the results. Consequently, the use of 4 km data enables frontal detections similar to 1 km data (using a standard median 3 × 3 convolution) in terms of detectability, length and location. This method, using 4 km data is easily applicable to large regions or at the global scale with far less constraints of data manipulation and processing time relative to 1 km data.