4 resultados para Freshwater marshes

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the late Quaternary, both external and internal forcings have driven major climatic shifts from glacial to interglacial conditions. Nonlinear climatic steps characterized the transitions leading to these extrema, with intermediate excursions particularly well expressed in the dynamics of the Northern Hemisphere cryosphere. Here we document the impact of these dynamics on the north-eastern North Atlantic Ocean, focussing on the 35-10 ka interval. Sea-surface salinities have been reconstructed quantitatively based on two independent methods from core MD95-2002, recovered from the northern Bay of Biscay adjacent to the axis of the Manche paleoriver outlet and thus in connection with proximal European ice sheets and glaciers. Quantitative reconstructions deriving from dinocyst and planktonic foraminiferal analyses have been combined within a robust chronology to assess the amplitude and timing of hydrological changes in this region. Our study evidences strong pulsed freshwater discharges which may have impacted the North Atlantic Meridional Overturning Circulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous components of the Arctic freshwater system (atmosphere, ocean, cryosphere, terrestrial hydrology) have experienced large changes over the past few decades, and these changes are projected to amplify further in the future. Observations are particularly sparse, both in time and space, in the Polar Regions. Hence, modeling systems have been widely used and are a powerful tool to gain understanding on the functioning of the Arctic freshwater system and its integration within the global Earth system and climate. Here, we present a review of modeling studies addressing some aspect of the Arctic freshwater system. Through illustrative examples, we point out the value of using a hierarchy of models with increasing complexity and component interactions, in order to dismantle the important processes at play for the variability and changes of the different components of the Arctic freshwater system and the interplay between them. We discuss past and projected changes for the Arctic freshwater system and explore the sources of uncertainty associated with these model results. We further elaborate on some missing processes that should be included in future generations of Earth system models and highlight the importance of better quantification and understanding of natural variability, amongst other factors, for improved predictions of Arctic freshwater system change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temporal variability of delta(13)C in suspended particulate organic matter (POM) and oyster Crassostrea gigas along a salinity gradient was investigated from May 1992 to September 1993 within the estuarine bay of Marennes-Oleron (France). During this period the mean daily discharge of the Charente River exhibited large seasonal variation, with a high discharge from November 1992 to January 1993. Contrary to that at the river mouth and the marine littoral, delta(13)C in POM and in oysters at mid-estuary was affected by the high flood period. The delta(13)C values of POM decreased in mid-estuary and remained at low levels during the high discharge period, indicating an increasing contribution of terrestrial inputs to the estuarine POM pool. At the same site, a remarkable decrease of delta(13)C in oysters occurred between December 1992 and March 1993 (after a time lag compared to the ambient POM), indicating incorporation of terrestrial organic matter in oyster tissues during the high flood discharge. The lag between the delta(13)C decrease in POM and oysters is attributed to the time needed for oyster tissues to incorporate enough newly terrestrial light carbon to be recognized by the delta(13)C measure (about 1 to 2 mo). This time interval depends on tissue turnover time. The delta(13)C POM decrease (i.e. 1.3 parts per thousand) cannot explain entirely the decrease observed in oysters (i.e. 2.3 parts per thousand). In fact, the pattern exhibited by mid-estuarine oysters can be explained by the increasing contribution of terrestrial organic matter to their feeding, and the inability to preferentially utilize specific components of the estuarine POM that are C-13-enriched.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemical factors (inorganic nitrogen, phosphate, silicic acid) that potentially or actually control primary production were determined for the Bay of Brest, France, a macrotidal ecosystem submitted to high-nitrate-loaded freshwater inputs (winter nitrate freshwater concentrations >700 mu M, Si:N molar ratio as low as 0.2, i.e. among the lowest ever published). Intensive data collection and observations were carried out from February 1993 to March 1994 to determine the variations of physical [salinity, temperature, photosynthetically active radiation (PAR), freshwater discharges] and chemical (oxygen and nutrients) parameters and their impacts on the phytoplankton cycle (fluorescence, pigments, primary production). With insufficient PAR the winter stocks of nutrients were almost nonutilized and the nitrate excess was exported to the adjacent ocean, due to rapid tidal exchange. By early April, a diatom-dominated spring bloom developed (chlorophyll a maximum = 7.7 mu g l(-1); primary production maximum = 2.34 g C m(-2) d(-1)) under high initial nutrient concentrations. Silicic acid was rapidly exhausted over the whole water column; it is inferred to be the primary limiting factor responsible for the collapse of the spring bloom by mid-May. Successive phytoplankton developments characterized the period of secondary blooms during summer and fall (successive surface chlorophyll a maxima = 3.5, 1.6, 1.8 and 1.0 mu g l(-1); primary production = 1.24, 1.18 and 0.35 g C m(-2) d(-1)). Those secondary blooms developed under lower nutrient concentrations, mostly originating from nutrient recycling. Until August, Si and P most likely limited primary production, whereas the last stage of the productive period in September seemed to be N limited instead, this being a period of total nitrate depletion in almost the whole water column. Si limitation of spring blooms has become a common feature in coastal ecosystems that receive freshwater inputs with Si:N molar ratios <1. The peculiarity of Si Limitation in the Bay of Brest is its extension through the summer period.