5 resultados para Fonctions multivoques

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents interactions between quantitative and qualitative river freshwater inputs and the shellfish farming (oyster and mussel) in the Pertuis Charentais. The quantity of freshwater (i.e. salinity) seems to have a weak influence on the shellfish farming contrarily to its quality determined by particulate and dissolved matters contained in the water. In autumn and winter, large precipitations have a "globally positive" effect amending the coastal ecosystem. Associated dissolved nutriments and the organic matter largely determine the quality of the coming spring growth for bred shellfish, itself controlling in turn the annual yield efficiencies. However, in winter their effects are postponed because of strong mineral load, low luminosity and temperature, then limiting the primary production. The spring contributions, directly linked to territorial practices, agriculture and tourism are more variable in quantity and quality from one year to another. They often correspond to high-risk inflows since numerous substances from anthropogenic watersheds can be found diluted in the coastal zone as in the Pertuis Charentais. Their impacts on in situ estuarine ecosystems are still poorly known since these substances are mainly studied and estimated in laboratory in controlled conditions. Several studies showed anthropogenic contaminations (i.e. cadmium, pesticides) could have significant direct or indirect effects on shellfish farming. For instance, the "summer" mortalities between 1990 and 2000 in the South of the Marennes-Oléron bay (MOB), that induced environmental and physiological oyster disorders, could be linked to pesticide effects, measured during consecutive years on the oyster bed of Ronce Perquis in the South of the MOB. The weak results from the spring larval rearing of the IFREMER experimental hatchery in the South of the bay, and chromosomal abnormalities measured on the stocks of wild oysters of the Pertuis could confirm a high-risk spring environment for the shellfish farming. In summer terrestrial inputs are reduced by low precipitations, anthropogenic water removals (drinking water, irrigation) and by plant evapotranspiration. Consequently certain years, a significant salinity increase in water masses of the Pertuis Charentais is observed. However, based on long-term observations, the significant interannual variability noticed in freshwater contributions constitutes one of the most important facts of these last years. When contributions are weak (i.e. 1991 and 2011), the mean annual salinity is 34.5 in the MOB. To the contrary, other years (i.e. 1977, 1981, 1983 and 1988), the mean salinity reduced to 30.5 shows the significant freshwater contributions to the bay. Elsewhere, particularly in the mediterranean region, oyster breeding water conditions characterized by high salinity values show the freshwater does not seem to be necessary for biological functions of the Pacific oyster Crassostrea gigas. Indeed, the oyster embryonic life in particular is well adapted to high salinity values as long as trophic resources are substantial and temperatures remain high. These two factors firstly condition the embryonic survival before the water salinity. Besides, in the Pertuis Charentais, wind conditions and the geographical bloodstock position rather determine the success of the larvae capture than seawater physic-chemical conditions. Finally, a misunderstanding still remains on summer freshwater contributions to the oyster larvae food supply.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tissue engineering is a real challenge for the treatment of cartilage pathologies. In this field, biomimetic hydrogels based on natural polymers are among the most commonly used matrices. A hydrogel made of silanized hydroxypropylmethylcellulose (HPMC-Si) is especially promising because it can be injected in cartilaginous lesions by minimally invasive surgery. However, the current synthesis of HPMC-Si is limited by the insolubility of hydroxypropylmethylcellulose (HPMC). This thesis work was focused on finding new synthesis conditions for the design of HPMC-Si hydrogel. In order to obtain a complete solubilization of HPMC and to improve its functionalization by the (3-glycidyloxypropyl) trimethoxysilane (GPTMS), the use of ionic liquids (IL), which are excellent solvents for polysaccharides, was undertaken. The beginning of this study was first devoted to the selection of an IL and then to the development of new reaction conditions. With these new conditions, higher silicon rates were obtained for HPMC modified in ionic liquid medium, however no hydrogel could be formed. The second part was therefore devoted to the synthesis of GPTMS 13C. Indeed, thanks to this radiolabeling, a structural characterization by 13C NMR of the HPMC-Si could be achieved. Finally, the reactivity in organic solvents of three organosilanes, including the GPTMS, was investigated toward nucleophiles representing the common functions found in natural polymers (e.g. -NH2, -OH, -SH). The results of this thesis have provided insights into the GPTMS reactivity in organic medium and thus paves the way to new conditions for the silanization of polysaccharides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Otoliths are calcified structures located in Osteichthyes’ inner ear that are involved in audition and balance. Their morphology is used as an indicator of various ecological processes or properties. This application requires identifying the endogenous and exogenous factors that act simultaneously as sources of shape variation. This thesis aims at detecting and quantifying the relative contributions of directional asymmetry and diet to otolith shape variation at the intra-population level. Directional asymmetry between left and right otoliths was found in flat-fishes, the blind-side otolith being always longer and larger, whereas it was negligible in round-fishes. However, asymmetry amplitude never exceeded 18 %, which suggests evolutionary canalization of otolith shape symmetry. A correlation between global diet and otolith was detected in 4 species studied in situ. Diet composition contributed more than food amount to morphological variation and affected otolith shape both globally and locally. An experimental study on sea bass (Dicentrarchus larbrax) showed that diet composition in terms of essential polyunsaturated fatty acids at larval stage affects otolith morphogenesis during juvenile stage without impacting on individuals’ somatic growth. This result suggests a direct effect of diet on otolith shape and not an indirect one through the somatic-otolith growth relationship. This effect disappeared at later stages, morphogenetic trajectories converging back to a similar shape, which suggests ontogenetic canalization of otolith shape.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lors d’une immersion en eau de mer, tous les matériaux et structures sont rapidement colonisés par des salissures d’origine biologique : des biofilms. La transformation des propriétés de surface dumatériau et la présence demicro- oumacro-organismes (bactéries, algues, balanes, larves) engendrent des risques accrus de corrosion localisée, la biodétérioration desmatériaux immergés, le blocage des fonctions mécaniques…Afin de contrôler le dépôt et le développement de ces biofilms, la méthode privilégiée est l’application de peintures anti-salissures. Cependant ces revêtements sont généralement toxiques pour l’environnement. C’est pourquoi, les travaux menés actuellement visent à isoler de nouvelles molécules, produites par les bactéries marines, dans le but de développer des moyens de luttes écologiques et non toxiques contre les biofilms indésirables.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this thesis is to improve knowledge on mechanisms involved in the response to nitrogen limitation and in lipid accumulation in the microalgae haptophyte Tisochrysis lutea. The wild type strain and a lipid accumulating mutant strain were grown under different nitrogen limitation and starvation and analyzed by functional genomics. Four genes of high-affinity nitrate/nitrite transporter (Nrt2) were identified and characterized to reveal the mechanisms involved in mineral absorption in this species. Transcriptomes of both strains were sequenced and proteins affected by nitrogen starvation and differentially expressed between the two strains were identified. We so identified the functions regulated by nitrogen deficiency and potentially involved in the accumulation of storage lipids. The responses of both strains to thin variations of nitrogen limitation were studied. The results of high-throughput proteomic analyzes suggest that the lipid-accumulation in the mutant strain is the result of carbon metabolism impacted overall, this spurred on signaling mechanisms. Two proteins have been studied since probably involved in carbon and nitrogen remobilization from amino acids catabolism during nitrogen limitation. This work increases knowledge on haptophytes, and brings assumptions on metabolic key involved in nitrogen limitation and carbon allocation in microalgae.