5 resultados para Exceed

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Boron and Li are light, incompatible elements that preferentially partition into the liquid phase, whether melt or aqueous fluid, and thus are useful for tracking fluid-related processes in rocks. Most of the Li isotopic data presently available on subduction-related rocks are from whole-rock analyses; and the B isotopic analyses of subduction material have been carried out either on whole-rocks or in-situ on an accessory phase, such as tourmaline. The new method presented here couples an ESI New Wave UP-193-FX ArF* (193 nm) excimer laser-ablation microscope with a Neptune Plus (Thermo Scientific) MC-ICP-MS aiming to measure both Li and B isotopes in situ with good spatial resolution (metamorphic minerals are commonly chemically zoned, and whole-rock analyses lose this detail). The data thus obtained are compared with SIMS analyses on the same mineral samples for B, and with MC-ICP-MS analyses on whole-rock or mineral separates from the same sample for Li. Additionally, data acquired on tourmaline standards were compared to SIMS values. The results show that for B concentrations above 5 μg/g, the data obtained by LA-MC-ICP-MS and by SIMS are identical within error, for mica (phengitic muscovite), pyroxene (jadeite), serpentine (antigorite), and tourmaline. For Li concentrations above 10 μg/g, the data obtained by LA-MC-ICP-MS and by MC-ICP-MS are also identical, within error, for mica (phengitic muscovite), and pyroxene (jadeite). However, analyses of tourmaline standards have shown significant differences with reference values, so LA-MC-ICP-MS does not yet appear to be an appropriate method to analyze Li isotopes in tourmalines. Thus, LA-MC-ICP-MS is a suitable method to measure Li and B isotopes with good spatial resolution in major rock-forming silicates from subduction-related rocks where concentrations exceed 10 μg/g and 5 μg/g, respectively, with an error on individual measurements equal to or less than previously used methods, but obtainable in a significantly shorter amount of time. The external reproducibility is ± 2.88 to 3.31 ‰ for B and ± 1.50 to 1.75 for Li, which is lower than or equal to the variations encountered within a given chemically zoned sample (up to 10 ‰ of variation within a given natural sample).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to assess the impact of the filtration method (in situ vs. ex situ) on the dissolved/particulate partitioning of 12 elements in hydrothermal samples collected from the Lucky Strike vent field (Mid-Atlantic Ridge; MAR). To do so, dissolved ( <0.45 mu m) and particulate Mg, Li, Mn, U, V, As, Ba, Fe, Zn, Cd, Pb and Cu were measured using different techniques (HR-ICP-MS, ICP-AES and CCSA). Using in situ filtration as a baseline, we showed that ex situ filtration (on-board and on shore after freezing) resulted in an underestimation of the dissolved pool, which was counterbalanced by an overestimation of the particulate pool for almost all the elements studied. We also showed that on-board filtration was acceptable for the assessment of dissolved and particulate Mn, Mg, Li and U for which the measurement bias for the dissolved fraction did not exceed 3%. However, in situ filtration appeared necessary for the accurate assessment of the dissolved and particulate concentrations of V, As, Fe, Zn, Ba, Cd, Pb and Cu. In the case of Fe, on-board filtration underestimated the dissolved pool by up to 96%. Laboratory filtration (after freezing) resulted in a large bias in the dissolved and particulate concentrations, unambiguously discounting this filtration method for deep-sea chemical speciation studies. We discuss our results in light of the precipitation processes that can potentially affect the accuracy of ex situ filtration methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we use an observational dataset built from Argo in situ profiles to describe the main large-scale patterns of intraseasonal mixed layer depth (MLD) variations in the Indian Ocean. An eddy permitting (0.25A degrees) regional ocean model that generally agrees well with those observed estimates is then used to investigate the mechanisms that drive MLD intraseasonal variations and to assess their potential impact on the related SST response. During summer, intraseasonal MLD variations in the Bay of Bengal and eastern equatorial Indian Ocean primarily respond to active/break convective phases of the summer monsoon. In the southern Arabian Sea, summer MLD variations are largely driven by seemingly-independent intraseasonal fluctuations of the Findlater jet intensity. During winter, the Madden-Julian Oscillation drives most of the intraseasonal MLD variability in the eastern equatorial Indian Ocean. Large winter MLD signals in northern Arabian Sea can, on the other hand, be related to advection of continental temperature anomalies from the northern end of the basin. In all the aforementioned regions, peak-to-peak MLD variations usually reach 10 m, but can exceed 20 m for the largest events. Buoyancy flux and wind stirring contribute to intraseasonal MLD fluctuations in roughly equal proportions, except for the Northern Arabian Sea in winter, where buoyancy fluxes dominate. A simple slab ocean analysis finally suggests that the impact of these MLD fluctuations on intraseasonal sea surface temperature variability is probably rather weak, because of the compensating effects of thermal capacity and sunlight penetration: a thin mixed-layer is more efficiently warmed at the surface by heat fluxes but loses more solar flux through its lower base.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deep-sea hydrothermal-vent habitats are typically linear, discontinuous, and short-lived. Some of the vent fauna such as the endemic polychaete family Alvinellidae are thought to lack a planktotrophic larval stage and therefore not to broadcast-release their offspring. The genetic evidence points to exchanges on a scale that seems to contradict this type of reproductive pattern. However, the rift valley may topographically rectify the bottom currents, thereby facilitating the dispersal of propagules between active vent sites separated in some cases by 10s of kilometers or more along the ridge axis. A propagule flux model based on a matrix of intersite distances, long-term current-meter data, and information on the biology and ecology of Alvinellidae was developed to test this hypothesis. Calculations of the number of migrants exchanged between two populations per generation (N-m) allowed comparisons with estimates obtained from genetic studies. N, displays a logarithmic decrease with increasing dispersal duration and reaches the critical value of 1 after 8 d when the propagule Aux model was run in standard conditions. At most, propagule traveling time cannot reasonably exceed 15-30 d, according to the model, whereas reported distances between sites would require longer lasting dispersal abilities. Two nonexclusive explanations are proposed. First, some aspects of the biology of Alvinellidae have been overlooked and long-distance dispersal does occur. Second, such dispersal never occurs in Alvinellidae, but the spatial-temporal dynamics of vent sites over geological timescales allows short-range dispersal processes to maintain gene flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The marine diatom Haslea ostrearia produces a water-soluble blue-pigment named marennine of economic interest (e.g. in aquaculture for the greening of oysters). Up to date the studies devoted to ecological conditions under which this microalga develops never took into account the bacterial-H. ostrearia relationships. In this study the bacterial community was analysed by PCR-TTGE before and after H. ostrearia isolation cells recovered from 4 localities, to distinguish the relative part of the biotope and the biocenose and eventually to describe the temporal dynamic of the structure of the bacterial community. The bacterial structure of the phycosphere differed strongly from that of the bulk sediment. The similarity between bacteria recovered from the biofilm and the suspended bacteria did not exceed 10% (vs. > 90% amongst biofilms). The differences in genetic fingerprints, more especially high between two H. ostrearia isolates showed also the highest differences in the bacterial structure as the result of specific metabolomics profiles. The non-targeted metabolomic investigation showed that these profiles were more distinct in case of bacteria-alga associations than for the H. ostrearia monoculture. At the scale of a culture cycle in laboratory conditions, the bacterial community was specific to the growth stage. When H. ostrearia was subcultured for 9 months, a shift in the bacterial structure was shown from 3-months subculturing and the bacterial structure stabilized afterwards (70-86% similarities). A first insight of the relationships between H. ostrearia and its surrounding bacteria was shown for a better understanding of the ecological feature of this diatom.