2 resultados para European American
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
During the late Quaternary, both external and internal forcings have driven major climatic shifts from glacial to interglacial conditions. Nonlinear climatic steps characterized the transitions leading to these extrema, with intermediate excursions particularly well expressed in the dynamics of the Northern Hemisphere cryosphere. Here we document the impact of these dynamics on the north-eastern North Atlantic Ocean, focussing on the 35-10 ka interval. Sea-surface salinities have been reconstructed quantitatively based on two independent methods from core MD95-2002, recovered from the northern Bay of Biscay adjacent to the axis of the Manche paleoriver outlet and thus in connection with proximal European ice sheets and glaciers. Quantitative reconstructions deriving from dinocyst and planktonic foraminiferal analyses have been combined within a robust chronology to assess the amplitude and timing of hydrological changes in this region. Our study evidences strong pulsed freshwater discharges which may have impacted the North Atlantic Meridional Overturning Circulation.
Resumo:
Reconstructing Northern Hemisphere ice-sheet oscillations and meltwater routing to the ocean is important to better understand the mechanisms behind abrupt climate changes. To date, research efforts have mainly focused on the North American (Laurentide) ice-sheets (LIS), leaving the potential role of the European Ice Sheet (EIS), and of the Scandinavian ice-sheet (SIS) in particular, largely unexplored. Using neodymium isotopes in detrital sediments deposited off the Channel River, we provide a continuous and well-dated record for the evolution of the EIS southern margin through the end of the last glacial period and during the deglaciation. Our results reveal that the evolution of EIS margins was accompanied with substantial ice recession (especially of the SIS) and simultaneous release of meltwater to the North Atlantic. These events occurred both in the course of the EIS to its LGM position (i.e., during Heinrich Stadial –HS– 3 and HS2; ∼31–29 ka and ∼26–23 ka, respectively) and during the deglaciation (i.e., at ∼22 ka, ∼20–19 ka and from 18.2 ± 0.2 to 16.7 ± 0.2 ka that corresponds to the first part of HS1). The deglaciation was discontinuous in character, and similar in timing to that of the southern LIS margin, with moderate ice-sheet retreat (from 22.5 ± 0.2 ka in the Baltic lowlands) as soon as the northern summer insolation increase (from ∼23 ka) and an acceleration of the margin retreat thereafter (from ∼20 ka). Importantly, our results show that EIS retreat events and release of meltwater to the North Atlantic during the deglaciation coincide with AMOC destabilisation and interhemispheric climate changes. They thus suggest that the EIS, together with the LIS, could have played a critical role in the climatic reorganization that accompanied the last deglaciation. Finally, our data suggest that meltwater discharges to the North Atlantic produced by large-scale recession of continental parts of Northern Hemisphere ice sheets during HS, could have been a possible source for the oceanic perturbations (i.e., AMOC shutdown) responsible for the marine-based ice stream purge cycle, or so-called HE's, that punctuate the last glacial period.