4 resultados para Epr

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Germanium (Ge) and Silicon (Si) exhibit similar geochemical behaviour in marine environments but are variably enriched in seafloor hydrothermal fluids relative to seawater. In this study, Ge isotope and Ge/Si ratio systematics were investigated in low temperature hydrothermal vents from Loihi Seamount (Pacific Ocean, 18°54’N, 155°15’W) and results were compared to high-temperature vents from the East Pacific Rise (EPR) at 9°50’N. Loihi offers the opportunity to understand contrasting Ge and Si behaviour in low temperature seafloor hydrothermal systems characterized by abundant Fe oxyhydroxide deposition at the seafloor. The results show that both Ge/Si and δ74/70Ge in hydrothermal fluids are fractionated relative to the basaltic host rocks. The enrichment in Ge vs. Si relative to fresh basalts, together with Ge isotope fractionation (Δ74/70Ge fluid-basalt up to 1.15 ‰ at EPR 9°50’N and 1.64 ‰ at Loihi) are best explained by the precipitation of minerals (e.g. quartz and Fe-sulfides) during higher temperature seawater-rock reactions in the subsurface. The study of Fe-rich hydrothermal deposits at Loihi, largely composed of Fe-oxyhydroxides, shows that Ge isotopes are also fractionated upon mineral precipitation at the seafloor. We obtained an average Ge isotope fractionation factor between Fe-oxyhydroxide (ferrihydrite) and dissolved Ge in the fluid of -2.0 ± 0.6 ‰ (2sd), and a maximum value of -3.6 ± 0.6 ‰ (2sd), which is consistent with recent theoretical and experimental studies. The study of a hydrothermal chimney at Bio 9 vent at EPR 9°50’N also demonstrates that Ge isotopes are fractionated by approximately -5.6 ± 0.6 ‰ (2sd) during precipitation of metal sulfides under hydrothermal conditions. Using combined Ge/Si and estimated Ge isotope signatures of Ge sinks and sources in seawater, we propose a preliminary oceanic budget of Ge which reveals that an important sink, referred as the “missing Ge sink”, may correspond to Ge sequestration into authigenic Fe-oxyhydroxides in marine sediments. This study shows that combining Ge/Si and δ74/70Ge systematics provides a useful tool to trace hydrothermal Ge and Si sources in marine environments and to understand formation processes of seafloor hydrothermal deposits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An inactive vent field comprised of dead chimneys was discovered on the ultrafast East Pacific Rise (EPR) at 18°S during the research campaign NAUDUR with the R/V Le Nadir in December 1993. One of these chimneys was sampled, studied and found to be largely composed of silica-mineralized bacterial-like filaments. The filaments are inferred to be the result of microbial activity leading to silica (± Fe-oxyhydroxide) precipitation. The chimney grew from the most external layer (precipitated 226 ± 4 yr. B.P.) towards the central chimney conduit. Hydrothermal activity ceased 154 ± 13 yr. B.P. and the chimney conduit was completely sealed. Mixing between an end-member hydrothermal fluid and seawater explains the Sr–Nd isotopic composition of the chimney. Seawater was the major source of Sr to the chimney, whereas the dominant Nd source was the local mid-ocean ridge basalt (MORB) leached by the hydrothermal fluids. The mixing scenarios point to a dynamic hydrothermal system with fluctuating fluid compositions. The proportion of seawater within the venting fluid responsible for the precipitation of the silica chimney layers varied between 94 and 85%. Pb-isotope data indicates that all of the Pb in the chimney was derived from the underlying MORB. The precipitation temperatures of the chimney layers varied between 55 and 71 °C, and were a function of the seawater/end-member hydrothermal fluid mixing ratio. δ30Si correlates with the temperature of precipitation implying that temperature is one of the major controls of the Si-isotope composition of the chimney. Concentrations of elements across the chimney wall were a function of this mixing ratio and the composition of the end-member hydrothermal fluid. The inward growth of the chimney wall and accompanying decrease in wall permeability resulted in an inward decrease in the seawater/hydrothermal fluid mixing ratio, which in turn exerted a control on the concentrations of the elements supplied mainly by the hydrothermal fluids. The silica chimney is significantly enriched in U, likely a result of bacterial concentration of U from the seawater-dominated vent fluid. The chimney is poor in rare earth elements (REE). It inherited its REE distribution patterns from the parent end-member hydrothermal fluids. The dilution of the hydrothermal fluid with over 85% seawater could not obliterate the particular REE features (positive Eu anomaly) of the hydrothermal fluids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bathymetric data from a Hydrosweep multibeam sonar survey of a 720 km long tectonic corridor on the east flank of the southern EPR at 14 degrees 14'S covered about 25,000 km(2) of zero-age to 8.5 m.y. old crust (magnetic anomaly 4A). In this corridor we document a strong correlation of robust along flowline changes in abyssal hill morphology and seamount size distribution with spreading rate changes deduced from our magnetic data. Indeed, we find that both rms height of abyssal hills and abundance and height of seamounts increase significantly as spreading rate changes from similar to 75 mm/yr to over 85 mm/yr (half rate). Moreover, we identified 46 seamounts taller than 100 m. Previous studies on the southern EPR reported a larger density of seamounts, organized primarily in chains. Our investigation, however, revealed seamounts not associated with major chains, leading us to the conclusion that different forms of off-axis volcanism occur along the spreading center.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although slow spreading ridges characterized by a deep axial valley and fast spreading ridges characterized by an axial bathymetric high have been extensively studied, the transition between these two modes of axial morphology is not well understood. We conducted a geophysical-survey of the intermediate spreading rate Southeast Indian Ridge between 88 degrees E and 118 degrees E, a 2300-km-long section of the ridge located between the Amsterdam hot spot and the Australian-Antarctic Discordance where satellite gravity data suggest that the Southeast Indian Ridge (SEIR) undergoes a change from an axial high in the west to an axial valley in the east. A basic change in axial morphology is found near 103 degrees 30'E in the shipboard data; the axis to the west is marked by an axial high, while a valley is found to the east. Although a well-developed axial high, characteristic of the East Pacific Rise (EPR), is occasionally present, the more common observation is a rifted high that is lower and pervasively faulted, sometimes with significant (> 50 m throw) faults within a kilometer of the axis. A shallow axial valley (< 700 m deep) is observed from 104 degrees E to 114 degrees E with a sudden change to a deep (>1200 m deep) valley across a transform at 114 degrees E. The changes in axial morphology along the SEIR are accompanied by a 500 m increase in near-axis ridge flank depth from 2800 m near 88 degrees E to 3300 m near 114 degrees E and by a 50 mGal increase in the regional level of mantle Bouguer gravity anomalies over the same distance, The regional changes in depth and mantle Bouguer anomaly (MBA) gravity can be both explained by a 1.7-2.4 km change in crustal thickness or by a mantle temperature change of 50 degrees C-90 degrees C. In reality, melt supply (crustal thickness) and mantle temperature are linked, so that changes in both may occur simultaneously and these estimates serve as upper bounds. The along-axis MBA gradient is not uniform. Pronounced steps in the regional level of the MBA gravity occur at 103 degrees 30'E-104 degrees E and at 114 degrees E-116 degrees E and correspond to the changes in the nature of the axial morphology and in the amplitude of abyssal hill morphology suggesting that the different forms of morphology do not grade into each other but rather represent distinctly different forms of axial (s)tructure and tectonics with a sharp transition between them. The change from an axial high to an axial valley requires a threshold effect in which the strength of the lithosphere changes quickly. The presence or absence of a quasi-steady state magma chamber may provide such a mechanism. The different forms of axial morphology are also associated with different intrasegment MBA gravity patterns. Segments with an axial high have an MBA low located at a depth minimum near the center of the segment, At EPR-like segments, the MBA low is about 10 mGal with along-axis gradients of 0.15-0.25 mGal/km, similar to those observed at the EPR, Rifted highs have a shallower low and lower gradients suggesting an attenuated composite magma chamber and a reduced and perhaps episodic melt supply. Segments with a shallow axial valley have very flat along-axis MBA profiles with little correspondence between axial depth and axial MBA gravity.