3 resultados para Epididymal Sperm Maturation
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
The study of maturation and spawning of the oyster is part of a research program to investigate the summer mortalities of the oysters, Crassostrea gigas in Marennes-Oléron Bay. Four maturity stages were simultaneously obtained by diet and thermal conditioning (immature, low maturation, mature and post-spawning stages). Measurements of clearance, filtration, absorption and respiration rates allowed a calculation of the scope for growth and hence an estimation of the oyster's energetic budget at various maturity stages. Male and female oysters had similar physiological responses. The filtration rate ranged from 2.4 to 2.6 1.h(-1) at the early stages of maturation and decreased to 1.8 1.h.' during the maturity stage. Growth rate resulting from gonad development did not induce filtration rate changes. Mature 2.5 and 1.5-year-old oysters showed a negative energy budget reaching -15 and -90 J.h(-1) respectively. By contrast, non-ripe oysters had scope for growth in the range 110 to 170 J.h(-1). A negative energy budget during the high maturation stage resulted from a reduced absorption efficiency. A new allometric relationship for the respiration model of C. gigas was defined during vitellogenesis with a 0.574 coefficient value. Based on Our results, the oyster's physiological weakness during vitellogenesis should be considered as a part of explanation for spring and summer mortalities of cultured oysters in Marennes-Oléron Bay.
Resumo:
The study of sexual maturation and spawning in the Pacific oyster (Crassostrea gigas) is part of a vast research programme that endeavours to understand the causes of mortality that occur sporadically during the spring and summer seasons in the Marennes-Oléron Bay. Thermal and diet conditioning were used to obtain oysters at each stage of maturity simultaneously. Using the measured rates of clearance, consumption, absorption and respiration provided estimates of growth potential and gave the energetic budget of oysters at different stages of sexual maturity. Physiological responses were similar for males and females. Filtration decreased from 2.4 to 2.6 l.h (-1) to 1.8 l.h (-1) with increasing maturity. Weight gain was associated with gonad development and did not appear to have an effect on the clearance rate. Oysters 2.5 years old showed a negative energy budget (-15 J h (-1)) at later maturity stages. This deficit was confirmed (90 J.h (-1)) in oysters 1.5 years old at the same stage of maturity. On the contrary, immature oysters, in the early stages of maturity or post-spawning, had a growth potential of 110 to 170 J.h (-1). The energy deficit observed at later stages of maturity was primarily due to absorption, which decreased sharply during peak gametogenesis. Using measured respiration rates, an allometric relationship specific to gonad growth was determined with a coefficient of 0.574. Low physiological performance of oysters, observed at later stages of sexual maturity, must be taken into account in research on the factors responsible for spring and summer mortalities affecting oyster farms in Marennes-Oléron.
Resumo:
Monitoring gonadmaturation for protandrous and functional hermaphrodite species such as the giant clamTridacna maxima is difficult due to the juxtaposition and relative proportion ofmale and female tissues in the gonad [gonadal sex ratio (GSR)]. Here, the relevance of the widely used gonadosomatic index (GSI) as proxy of giant clam gonad maturation is tested with a large dataset (n = 265). Gonadosomatic index is compared with other indices, namely the proportion of the male part harboring spermatozoids, the proportion of empty oocyte follicles, the mean oocyte diameter, and the oocyte elongation. At gonad scale, high index variability highlighted partial spawning. At individual scale, male and female maturation proxies were contrasted, showing either asynchronous emissions of male and female gametes or contrasted spermatogenesis and oogenesis duration. The GSI was mostly driven by the number and diameter of oocytes and therefore it is recommended here as primary proxy for female maturity. Except for the oocyte elongation, all indices were affected by the GSR, which ruled out drawing conclusions at population scale. These results highlight the need for maturation stage proxies that are optimized for functional hermaphrodite species.