2 resultados para Discard
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
Among bivalve species, the Pacific oyster, Crassostrea gigas, is the most economically important bivalve production over the world. Today, C. gigas is subject to an important production effort that leads to an intensive artificial selection. Larval stage is relatively unknown, specifically in a domestication context. Genetic consequence of artificial selection is still at a preliminary study. We aimed to tackle the consequence of inconscient domestication on the variance reproductive success focusing on larval stage, keystone of the life cycle. We studied two kinds of specific selective processes that common hatchery rearing practices exert : the effect of discarding the smallest larvae on genetic diversity and the artificial environment rearing effect via the temperature providing a contrast resembling wild versus hatchery conditions (20 and 26°C). In order to monitor the effect of the selection of fast growing larvae by sieving, growth variability and genetic diversity in a larval population descended from a factorial breeding was studied. We used a mixed-family approach to reduce potentially confounding environmental biais. The retrospective assignment of individuals to family groups has been performed using a three microsatellite markers set. Two different rearing were carried out in parallel. For three (replicates) 50-l tanks, the smallest larvae were progressively discarded by selective sieving, whereas for the three others no selective sieving was performed. The intensity of selective sieving was adjusted so as to discard 50% of the larvae over the whole rearing period in a progressive manner. As soon as the larvae reached the pediveliger stage, ready to settle larvae were sampled for genetic analysis. Regarding the artificial environment rearing effect via the temperature, we used a similar mixed-family approach. The progeny from a factorial breeding design was divided as follows: three (replicates) 50-l tanks were dedicaced to a rearing at 26°C versus 20°C for three others 50-l tanks. The whole size variability was preserved for this experiment. Individual growth measurements for larvae genetically identified have been performed at days 22 and 30 after fertilization for both conditions. In a same way, we collected individual measurements for genotyped juvenile oysters (80 days after fertilization). At a phenotypic scale, relative survival and settlement success for larvae with sieving were higher. Sieving appears as a time-saving process associated with a better relative survival ratio. But in the same time, our results confirm that a significant genetic variability exist for early developmental traits in the Pacific oyster. This is congruent with the results already obtained that investigated genetic variability and genetic correlations in early life-history traits of Crassostrea gigas. Discarding around 50% of the smallest larvae can lead to significant selection at the larval stage.
Resumo:
Influence of the nature of the twine on the codend selectivity: Reminder: During the “SELECT 12” campaign in April 1996, we demonstrated that the nature of the material used for the manufacture of the trawl codend has an influence on the selectivity. Results showed that the use of single twine made of polyamide in the codend was more selective on hake and Nephrops than single twine made of polyethylene. Nevertheless single twine made of polyamide codend loses “flexibility” with use and therefore a study should be done to investigate its impact on selectivity (fishermen do not often use this equipment: however this 150 mesh net is particularly selective and it would be premature to discard it). Influence of the diameter of the twine and the mesh number on the selectivity of codends: These results show the high variability of codend charactistics tested on hake. The parameters tested during this campaign - e.g., diameter of the twine and mesh number (length of codend) - influence the selectivity of codends. It seems that the capture volume and the length of the codend are essential for the selectivity, while the nature of the equipment is secondary. However each parameter should be investigated in a future campaign. Furthermore, any regulatory measure that would seek to suppress the use of double twine polyethylene codend would be premature. Perspective: further experiment should be considered with the standard polyamide codend of 32.5 mm. • An additional experiment with the 100 mesh and 65 mm polyethylene double twine test codend to determine the influence of the mesh number on the selectivity; • An additional experiment with the 100 mesh deep and 65 mm polyethylene double twine (4 mm diameter) test codend to determine the influence of the diameter of the twine on the selectivity.