2 resultados para Deep Survey
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
The structure of the Moroccan and Nova Scotia conjugate rifted margins is of key importance for understanding the Mesozoic break-up and evolution of the northern central Atlantic Ocean basin. Seven combined multichannel reflection (MCS) and wide-angle seismic (OBS) data profiles were acquired along the Atlantic Moroccan margin between the latitudes of 31.5° and 33° N during the MIRROR seismic survey in 2011, in order to image the transition from continental to oceanic crust, to study the variation in crustal structure and to characterize the crust under the West African Coast Magnetic Anomaly (WACMA). The data were modeled using a forward modeling approach. The final models image crustal thinning from 36 km thickness below the continent to approximately 8 km in the oceanic domain. A 100 km wide zone characterized by rough basement topography and high seismic velocities up to 7.4 km/s in the lower crust is observed westward of the West African Coast Magnetic Anomaly. No basin underlain by continental crust has been imaged in this region, as has been identified north of our study area. Comparison to the conjugate Nova Scotian margin shows a similar continental crustal thickness and layer geometry, and the existence of exhumed and serpentinized upper mantle material on the Canadian side only. The oceanic crustal thickness is lower on the Canadian margin.
Resumo:
A study of the temporal dynamics of iron concentrations and temperature on a faunal assemblage at the Lucky Strike vent was performed using the Tempo ecological module at the EMSO-Azores deep-sea observatory. The CHEMINI in situ analyzer was implemented on this structure to determine reactive iron concentrations in unfiltered seawater samples along with a temperature probe. Stability tests were performed on the CHEMINI analyzer before deployment (optical module, hyperbaric tests, and deep-sea calibration) for long-term in situ analysis of reactive iron (six months, 2013–2014) at the Tour Eiffel active edifice. Recorded daily, the in situ standard (25 \mu mol.L {}^{-1} ) showed excellent reproducibility (1.07%, n=522 ), confirming satisfactory analytical performance of the CHEMINI analyzer and thus validating the iron concentrations measured by the instrument. Furthermore, the analyzer proved to be reliable and robust over time. The averaged reactive iron concentration for the six-month period remained low ([Fe] =text{7.12}\pm text{2.11} \mu mol.L {}^{-1} , n=519 ), but showed some noticeable variations with temperature. Reactive iron concentrations and temperature were significantly correlated emphasizing reactive iron stabilization over the time of deployment. Period spectra indicated strong tidal influence and relevant frequencies of four to five days for both variables.