2 resultados para Crustaceans

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complete and transparent reporting of key elements of diagnostic accuracy studies for infectious diseases in cultured and wild aquatic animals benefits end-users of these tests, enabling the rational design of surveillance programs, the assessment of test results from clinical cases and comparisons of diagnostic test performance. Based on deficiencies in the Standards for Reporting of Diagnostic Accuracy (STARD) guidelines identified in a prior finfish study (Gardner et al. 2014), we adapted the Standards for Reporting of Animal Diagnostic Accuracy Studies—paratuberculosis (STRADAS-paraTB) checklist of 25 reporting items to increase their relevance to finfish, amphibians, molluscs, and crustaceans and provided examples and explanations for each item. The checklist, known as STRADAS-aquatic, was developed and refined by an expert group of 14 transdisciplinary scientists with experience in test evaluation studies using field and experimental samples, in operation of reference laboratories for aquatic animal pathogens, and in development of international aquatic animal health policy. The main changes to the STRADAS-paraTB checklist were to nomenclature related to the species, the addition of guidelines for experimental challenge studies, and the designation of some items as relevant only to experimental studies and ante-mortem tests. We believe that adoption of these guidelines will improve reporting of primary studies of test accuracy for aquatic animal diseases and facilitate assessment of their fitness-for-purpose. Given the importance of diagnostic tests to underpin the Sanitary and Phytosanitary agreement of the World Trade Organization, the principles outlined in this paper should be applied to other World Organisation for Animal Health (OIE)-relevant species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anthropogenic activities and land-based inputs into the sea may influence the trophic structure and functioning of coastal and continental shelf ecosystems, despite the numerous opportunities and services the latter offer to humans and wildlife. In addition, hydrological structures and physical dynamics potentially influence the sources of organic matter (e.g., terrestrial versus marine, or fresh material versus detrital material) entering marine food webs. Understanding the significance of the processes that influence marine food webs and ecosystems (e.g., terrestrial inputs, physical dynamics) is crucially important because trophic dynamics are a vital part of ecosystem integrity. This can be achieved by identifying organic matter sources that enter food webs along inshore–offshore transects. We hypothesised that regional hydrological structures over wide continental shelves directly control the benthic trophic functioning across the shelf. We investigated this issue along two transects in the northern ecosystem of the Bay of Biscay (north-eastern Atlantic). Carbon and nitrogen stable isotope analysis (SIA) and fatty acid analysis (FAA) were conducted on different complementary ecosystem compartments that include suspended particulate organic matter (POM), sedimentary organic matter (SOM), and benthic consumers such as bivalves, large crustaceans and demersal fish. Samples were collected from inshore shallow waters (at ∼1 m in depth) to more than 200 m in depth on the offshore shelf break. Results indicated strong discrepancies in stable isotope (SI) and fatty acid (FA) compositions in the sampled compartments between inshore and offshore areas, although nitrogen SI (δ15N) and FA trends were similar along both transects. Offshore the influence of a permanently stratified area (described previously as a “cold pool”) was evident in both transects. The influence of this hydrological structure on benthic trophic functioning (i.e., on the food sources available for consumers) was especially apparent across the northern transect, due to unusual carbon isotope compositions (δ13C) in the compartments. At stations under the cold pool, SI and FA organism compositions indicated benthic trophic functioning based on a microbial food web, including a significant contribution of heterotrophic planktonic organisms and/or of SOM, notably in stations under the cold pool. On the contrary, inshore and shelf break areas were characterised by a microalgae-based food web (at least in part for the shelf break area, due to slope current and upwelling that can favour fresh primary production sinking on site). SIA and FAA were relevant and complementary tools, and consumers better medium- to long-term system integrators than POM samples, for depicting the trophic functioning and dynamics along inshore–offshore transects over continental shelves.