4 resultados para Coral Plesiastrea-versipora
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
A better understanding of the key ecological processes of marine organisms is fundamental to improving design and effective implementation of marine protected areas (MPAs) and marine biodiversity. The movement behavior of coral reef fish is a complex mechanism that is highly linked to species life-history traits, predation risk and food resources. We used passive acoustic telemetry to study monthly, daily and hourly movement patterns and space use in two species, Schoolmaster snapper (Lutjanus apodus) and Stoplight parrotfish (Sparisoma viride). We investigated the spatial overlap between the two species and compared intra-specific spatial overlap between day and night. Presence-absence models showed different diel presence and habitat use patterns between the two species. We constructed a spatial network of the movement patterns, which showed that for both species when fish were detected by the array of receivers most movements were made around the coral reef habitat while occasionally moving to silt habitats. Our results show that most individuals made predictable daily crepuscular migrations between different locations and habitat types, although individual behavioral changes were observed for some individuals across time. Our study also highlights the necessity to consider multiple species during MPA implementation and to take into account the specific biological and ecological traits of each species. The low number of fish detected within the receiver array, as well as the intraspecific variability observed in this study, highlight the need to compare results across species and individuals to be used for MPA management.
Resumo:
The scleractinian coral Lophelia pertusa has been the focus of deep-sea research since the recognition of the vast extent of coral reefs in North Atlantic waters two decades ago, long after their existence was mentioned by fishermen. These reefs where shown to provide habitat, concentrate biomass and act as feeding or nursery grounds for many species, including those targeted by commercial fisheries. Thus, the attention given to this cold-water coral (CWC) species from researchers and the wider public has increased. Consequently, new research programs triggered research to determine the full extent of the corals geographic distribution and ecological dynamics of “Lophelia reefs”. The present study is based on a systematic standardised sampling design to analyse the distribution and coverage of CWC reefs along European margins from the Bay of Biscay to Iceland. Based on Remotely Operated Vehicle (ROV) image analysis, we report an almost systematic occurrence of Madrepora oculata in association with L. pertusa with similar abundances of both species within explored reefs, despite a tendency of increased abundance of L. pertusa compared to M. oculata toward higher latitudes. This systematic association occasionally reached the colony scale, with “twin” colonies of both species often observed growing next to each other when isolated structures were occurring off-reefs. Finally, several “false chimaera” were observed within reefs, confirming that colonial structures can be “coral bushes” formed by an accumulation of multiple colonies even at the inter-specific scale, with no need for self-recognition mechanisms. Thus, we underline the importance of the hitherto underexplored M. oculata in the Eastern Atlantic, re-establishing a more balanced view that both species and their yet unknown interactions are required to better elucidate the ecology, dynamics and fate of European CWC reefs in a changing environment.
Resumo:
Small-scale spatial and temporal variability in animal abundance is an intrinsic characteristic of marine ecosystems but remains largely unknown for most animals, including coral reef fishes. In this study, we used a remote autonomous unbaited video system and recorded reef fish assemblages during daylight hours, 10 times a day for 34 consecutive days in a branching coral patch of the lagoon of New Caledonia. In total, 50 031 fish observations belonging to 114 taxa, 66 genera and 31 families were recorded in 256 recorded videos. Carnivores and herbivore-detritus feeders dominated the trophic structure. We found significant variations in the composition of fish assemblages between times of day. Taxa richness and fish abundance were greater in the early morning and in the late afternoon than during the day. Fourteen taxa displayed well-defined temporal patterns in abundance with one taxon influenced by time of day, six influenced by tidal state and seven influenced by both time of day and tidal state. None of these 14 taxa were piscivores, 10 were herbivore-detritus feeders, three were carnivores and one was plankton feeder. Our results suggest a diel migration from feeding grounds to shelter areas and highlight the importance of taking into account small-scale temporal variability in animal diversity and abundance when studying connectivity between habitats and monitoring communities.
Resumo:
In September 2013, staff from the University of the South Pacific (USP) Honiara campus, the Secretariat of the Pacific Community (SPC) and IFREMER (UR LEADNC, AMBIO project) in New Caledonia, and the French Institute for Pacific Coral Reefs (IRCP) in Moorea, French Polynesia, co-facilitated a workshop entitled “Different survey methods of coral reef fish, including the methods based on underwater video”. The workshop was attended by students from USP, NGO and fisheries officers. They were trained to several underwater visual census techniques and to the STAVIRO video-based technique, including both field work and data analysis.