2 resultados para Control constraints
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
A dense grid of high- and very high resolution seismic data, together with piston cores and borehole data providing time constraints, enables us to reconstruct the history of the Bourcart canyon head in the western Mediterranean Sea during the last glacial/interglacial cycle. The canyon fill is composed of confined channel–levee systems fed by a series of successively active shelf fluvial systems, originating from the west and north. Most of the preserved infill corresponds to the interval between Marine Isotope Stage (MIS) 3 and the early deglacial (19 cal ka BP). Its deposition was strongly controlled by a relative sea level that impacted the direct fluvial/canyon connection. During a period of around 100 kyr between MIS 6 and MIS 2, the canyon “prograded” by about 3 km. More precisely, several parasequences can be identified within the canyon fill. They correspond to forced-regressed parasequences (linked to punctuated sea-level falls) topped by a progradational-aggradational parasequence (linked to a hypothetical 19-ka meltwater pulse (MWP)). The bounding surfaces between forced-regressed parasequences are condensed intervals formed during intervals of relative sediment starvation due to flooding episodes. The meandering pattern of the axial incision visible within the canyon head, which can be traced landward up to the Agly paleo-river, is interpreted as the result of hyperpycnal flows initiated in the river mouth in a context of increased rainfall and mountain glacier flushing during the early deglacial.
Resumo:
Recommendation for Oxygen Measurements from Argo Floats: Implementation of In-Air-Measurement Routine to Assure Highest Long-term Accuracy As Argo has entered its second decade and chemical/biological sensor technology is improving constantly, the marine biogeochemistry community is starting to embrace the successful Argo float program. An augmentation of the global float observatory, however, has to follow rather stringent constraints regarding sensor characteristics as well as data processing and quality control routines. Owing to the fairly advanced state of oxygen sensor technology and the high scientific value of oceanic oxygen measurements (Gruber et al., 2010), an expansion of the Argo core mission to routine oxygen measurements is perhaps the most mature and promising candidate (Freeland et al., 2010). In this context, SCOR Working Group 142 “Quality Control Procedures for Oxygen and Other Biogeochemical Sensors on Floats and Gliders” (www.scor-int.org/SCOR_WGs_WG142.htm) set out in 2014 to assess the current status of biogeochemical sensor technology with particular emphasis on float-readiness, develop pre- and post-deployment quality control metrics and procedures for oxygen sensors, and to disseminate procedures widely to ensure rapid adoption in the community.