2 resultados para Continuous high-frequency sampling

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small-scale spatial and temporal variability in animal abundance is an intrinsic characteristic of marine ecosystems but remains largely unknown for most animals, including coral reef fishes. In this study, we used a remote autonomous unbaited video system and recorded reef fish assemblages during daylight hours, 10 times a day for 34 consecutive days in a branching coral patch of the lagoon of New Caledonia. In total, 50 031 fish observations belonging to 114 taxa, 66 genera and 31 families were recorded in 256 recorded videos. Carnivores and herbivore-detritus feeders dominated the trophic structure. We found significant variations in the composition of fish assemblages between times of day. Taxa richness and fish abundance were greater in the early morning and in the late afternoon than during the day. Fourteen taxa displayed well-defined temporal patterns in abundance with one taxon influenced by time of day, six influenced by tidal state and seven influenced by both time of day and tidal state. None of these 14 taxa were piscivores, 10 were herbivore-detritus feeders, three were carnivores and one was plankton feeder. Our results suggest a diel migration from feeding grounds to shelter areas and highlight the importance of taking into account small-scale temporal variability in animal diversity and abundance when studying connectivity between habitats and monitoring communities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The European Multidisciplinary Seafloor and water-column Observatory (EMSO) European Research Infrastructure Consortium (ERIC) provides power, communications, sensors, and data infrastructure for continuous, high-resolution, (near-)real-time, interactive ocean observations across a multidisciplinary and interdisciplinary range of research areas including biology, geology, chemistry, physics, engineering, and computer science, from polar to subtropical environments, through the water column down to the abyss. Eleven deep-sea and four shallow nodes span from the Arctic through the Atlantic and Mediterranean, to the Black Sea. Coordination among the consortium nodes is being strengthened through the EMSOdev project (H2020), which will produce the EMSO Generic Instrument Module (EGIM). Early installations are now being upgraded, for example, at the Ligurian, Ionian, Azores, and Porcupine Abyssal Plain (PAP) nodes. Significant findings have been flowing in over the years; for example, high-frequency surface and subsurface water-column measurements of the PAP node show an increase in seawater pCO2 (from 339 μatm in 2003 to 353 μatm in 2011) with little variability in the mean air-sea CO2 flux. In the Central Eastern Atlantic, the Oceanic Platform of the Canary Islands open-ocean canary node (aka ESTOC station) has a long-standing time series on water column physical, biogeochemical, and acidification processes that have contributed to the assessment efforts of the Intergovernmental Panel on Climate Change (IPCC). EMSO not only brings together countries and disciplines but also allows the pooling of resources and coordination to assemble harmonized data into a comprehensive regional ocean picture, which will then be made available to researchers and stakeholders worldwide on an open and interoperable access basis.