2 resultados para Content-in-motion
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
A lean muscle line (L) and a fat muscle line (F) of rainbow trout were established (Quillet et al., 2005) by a two-way selection for muscle lipid content performed on pan-size rainbow trout using a non-destructive measurement of muscle lipid content (Distell Fish Fat Meter®). The aim of the present study was to evaluate the consequences of this selective breeding on flesh quality of pan size (290 g) diploid and triploid trout after three generations of selection. Instrumental evaluations of fillet color and pH measurement were performed at slaughter. Flesh color, pH, dry matter content and mechanical resistance were measured at 48 h and 96 h postmortem on raw and cooked flesh, respectively. A sensorial profile analysis was performed on cooked fillets. Fillets from the selected fatty muscle line (F) had a higher dry matter content and were more colorful for both raw and cooked fillets. Mechanical evaluation indicated a tendency of raw flesh from F fish to be less firm, but this was not confirmed after cooking, neither instrumentally or by sensory analysis. The sensory analysis revealed higher fat loss, higher intensity of flavor of cooked potato, higher exudation, higher moisture content and a more fatty film left on the tongue for flesh from F fish. Triploid fish had mechanically softer raw and cooked fillets, but the difference was not perceived by the sensorial panel. The sensorial evaluation also revealed a lower global intensity of odor, more exudation and a higher moisture content in the fillets from triploid fish. These differences in quality parameters among groups of fish were associated with larger white muscle fibers in F fish and in triploid fish. The data provide additional information about the relationship between muscle fat content, muscle cellularity and flesh quality.
Resumo:
In the Pacific oyster, spermatozoa are characterized by a remarkably long movement phase (i.e., over 24 h) sustained by a capacity to maintain intracellular ATP level. To gain information on oxidative phosphorylation (OXPHOS) functionality during the motility phase of Pacific oyster spermatozoa, we studied 1) changes in spermatozoal mitochondrial activity, that is, mitochondrial membrane potential (MMP), and intracellular ATP content in relation to motion parameters and 2) the involvement of OXPHOS for spermatozoal movement using carbonyl cyanide m-chlorophenyl hydrazone (CCCP). The percentage of motile spermatozoa decreased over a 24 h movement period. MMP increased steadily during the first 9 h of the movement phase and was subsequently maintained at a constant level. Conversely, spermatozoal ATP content decreased steadily during the first 9 h postactivation and was maintained at this level during the following hours of the movement phase. When OXPHOS was decoupled by CCCP, the movement of spermatozoa was maintained 2 h and totally stopped after 4 h of incubation, whereas spermatozoa were still motile in the control after 4 h. Our results suggest that the ATP sustaining flagellar movement of spermatozoa may partially originate from glycolysis or from mobilization of stored ATP or from potential phosphagens during the first 2 h of movement as deduced by the decoupling by CCCP of OXPHOS. However, OXPHOS is required to sustain the long motility phase of Pacific oyster spermatozoa. In addition, spermatozoa may hydrolyze intracellular ATP content during the early part of the movement phase, stimulating mitochondrial activity. This stimulation seems to be involved in sustaining a high ATP level until the end of the motility phase.