3 resultados para Comportements sexuels problématiques
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
The study of maturation and spawning of the oyster is part of a research program to investigate the summer mortalities of the oysters, Crassostrea gigas in Marennes-Oléron Bay. Four maturity stages were simultaneously obtained by diet and thermal conditioning (immature, low maturation, mature and post-spawning stages). Measurements of clearance, filtration, absorption and respiration rates allowed a calculation of the scope for growth and hence an estimation of the oyster's energetic budget at various maturity stages. Male and female oysters had similar physiological responses. The filtration rate ranged from 2.4 to 2.6 1.h(-1) at the early stages of maturation and decreased to 1.8 1.h.' during the maturity stage. Growth rate resulting from gonad development did not induce filtration rate changes. Mature 2.5 and 1.5-year-old oysters showed a negative energy budget reaching -15 and -90 J.h(-1) respectively. By contrast, non-ripe oysters had scope for growth in the range 110 to 170 J.h(-1). A negative energy budget during the high maturation stage resulted from a reduced absorption efficiency. A new allometric relationship for the respiration model of C. gigas was defined during vitellogenesis with a 0.574 coefficient value. Based on Our results, the oyster's physiological weakness during vitellogenesis should be considered as a part of explanation for spring and summer mortalities of cultured oysters in Marennes-Oléron Bay.
Resumo:
The study of sexual maturation and spawning in the Pacific oyster (Crassostrea gigas) is part of a vast research programme that endeavours to understand the causes of mortality that occur sporadically during the spring and summer seasons in the Marennes-Oléron Bay. Thermal and diet conditioning were used to obtain oysters at each stage of maturity simultaneously. Using the measured rates of clearance, consumption, absorption and respiration provided estimates of growth potential and gave the energetic budget of oysters at different stages of sexual maturity. Physiological responses were similar for males and females. Filtration decreased from 2.4 to 2.6 l.h (-1) to 1.8 l.h (-1) with increasing maturity. Weight gain was associated with gonad development and did not appear to have an effect on the clearance rate. Oysters 2.5 years old showed a negative energy budget (-15 J h (-1)) at later maturity stages. This deficit was confirmed (90 J.h (-1)) in oysters 1.5 years old at the same stage of maturity. On the contrary, immature oysters, in the early stages of maturity or post-spawning, had a growth potential of 110 to 170 J.h (-1). The energy deficit observed at later stages of maturity was primarily due to absorption, which decreased sharply during peak gametogenesis. Using measured respiration rates, an allometric relationship specific to gonad growth was determined with a coefficient of 0.574. Low physiological performance of oysters, observed at later stages of sexual maturity, must be taken into account in research on the factors responsible for spring and summer mortalities affecting oyster farms in Marennes-Oléron.
Resumo:
This manuscript presents three approaches : analytical, experimental and numerical, to study the behaviour of a flexible membrane tidal energy converter. This technology, developed by the EEL Energy company, is based on periodic deformations of a pre-stressed flexible structure. Energy converters, located on each side of the device, are set into motion by the wave-like motion. In the analytical model, the membrane is represented by a linear beam model at one dimension and the flow by a 3 dimensions potential fluid. The fluid forces are evaluated by the elongated body theory. Energy is dissipated all over the length of the membrane. A 20th scale experimental prototype has been designed with micro-dampers to simulate the power take-off. Trials have allowed to validate the undulating membrane energy converter concept. A numerical model has been developed. Each element of the device is represented and the energy dissipation is done by dampers element with a damping law linear to damper velocity. Comparison of the three approaches validates their ability to represent the membrane behaviour without damping. The energy dissipation applied with the analytical model is clearly different from the two other models because of the location (where the energy is dissipated) and damping law. The two others show a similar behaviour and the same order of power take off repartition but value of power take off are underestimated by the numerical model. This three approaches have allowed to put forward key-parameters on which depend the behaviour of the membrane and the parametric study highlights the complementarity and the advantage of developing three approaches in parallel to answer industrial optimization problems. To make the link between trials in flume tank and sea trials, a 1/6th prototype has been built. To do so, the change of scale was studied. The behaviour of both prototypes is compared and differences could be explained by differences of boundary conditions and confinement effects. To evaluated membrane long-term behaviour at sea, a method of ageing accelerated by temperature and fatigue tests have been carried out on prototype materials samples submerged in sea water.