2 resultados para Common carp (Cyprinus carpio L)

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Close similarities have been found between the otoliths of sea-caught and laboratory-reared larvae of the common sole Solea solea (L.), given appropriate temperatures and nourishment of the latter. But from hatching to mouth formation. and during metamorphosis, sole otoliths have proven difficult to read because the increments may be less regular and low contrast. In this study, the growth increments in otoliths of larvae reared at 12 degrees C were counted by light microscopy to test the hypothesis of daily deposition, with some results verified using scanning electron microscopy (SEM), and by image analysis in order to compare the reliability of the 2 methods in age estimation. Age was first estimated (in days posthatch) from light micrographs of whole mounted otoliths. Counts were initiated from the increment formed at the time of month opening (Day 4). The average incremental deposition rate was consistent with the daily hypothesis. However, the light-micrograph readings tended to underestimate the mean ages of the larvae. Errors were probably associated with the low-contrast increments: those deposited after the mouth formation during the transition to first feeding, and those deposited from the onset of eye migration (about 20 d posthatch) during metamorphosis. SEM failed to resolve these low-contrast areas accurately because of poor etching. A method using image analysis was applied to a subsample of micrograph-counted otoliths. The image analysis was supported by an algorithm of pattern recognition (Growth Demodulation Algorithm, GDA). On each otolith, the GDA method integrated the growth pattern of these larval otoliths to averaged data from different radial profiles, in order to demodulate the exponential trend of the signal before spectral analysis (Fast Fourier Transformation, FFT). This second method both allowed more precise designation of increments, particularly for low-contrast areas, and more accurate readings but increased error in mean age estimation. The variability is probably due to a still rough perception of otolith increments by the GDA method, counting being achieved through a theoretical exponential pattern and mean estimates being given by FFT. Although this error variability was greater than expected, the method provides for improvement in both speed and accuracy in otolith readings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Five years of SMOS L-band brightness temperature data intercepting a large number of tropical cyclones (TCs) are analyzed. The storm-induced half-power radio-brightness contrast (ΔI) is defined as the difference between the brightness observed at a specific wind force and that for a smooth water surface with the same physical parameters. ΔI can be related to surface wind speed and has been estimated for ~ 300 TCs that intercept with SMOS measurements. ΔI, expressed in a common storm-centric coordinate system, shows that mean brightness contrast monotonically increases with increased storm intensity ranging from ~ 5 K for strong storms to ~ 24 K for the most intense Category 5 TCs. A remarkable feature of the 2D mean ΔI fields and their variability is that maxima are systematically found on the right quadrants of the storms in the storm-centered coordinate frame, consistent with the reported asymmetric structure of the wind and wave fields in hurricanes. These results highlight the strong potential of SMOS measurements to improve monitoring of TC intensification and evolution. An improved empirical geophysical model function (GMF) was derived using a large ensemble of co-located SMOS ΔI, aircraft and H*WIND (a multi-measurement analysis) surface wind speed data. The GMF reveals a quadratic relationship between ΔI and the surface wind speed at a height of 10 m (U10). ECMWF and NCEP analysis products and SMOS derived wind speed estimates are compared to a large ensemble of H*WIND 2D fields. This analysis confirms that the surface wind speed in TCs can effectively be retrieved from SMOS data with an RMS error on the order of 10 kt up to 100 kt. SMOS wind speed products above hurricane force (64 kt) are found to be more accurate than those derived from NWP analyses products that systematically underestimate the surface wind speed in these extreme conditions. Using co-located estimates of rain rate, we show that the L-band radio-brightness contrasts could be weakly affected by rain or ice-phase clouds and further work is required to refine the GMF in this context.