8 resultados para Climatic Variability of the Mediterranean Paleo-circulation

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current dynamics in the Strait of Bonifacio (south Corsica) were investigated at a small scale during the STELLAMARE1 multidisciplinary cruise in summer 2012, using in situ measurements and modeling data. The Strait of Bonifacio is a particularly sensitive marine area in which specific conservation measures have been taken to preserve the natural environment and wild species. Good knowledge of the hydrodynamics in this area is essential to optimize the Marine Protected Area's management rules. Therefore, we used a high-resolution model (400 m) based on the MARS3D code to investigate the main flux exchanges and to formulate certain hypotheses about the formation of possible eddy structures. The aim of the present paper is first to synthetize the results obtained by combining Acoustic Doppler Current Profiler data, hydrological parameters, Lagrangian drifter data, and satellite observations such as MODIS OC5 chlorophyll a data or Metop-A AVHRR Sea Surface Temperature (SST) data. These elements are then used to validate the presence of the mesoscale eddies simulated by the model and their recurrence outside the cruise period. To complete the analysis, the response of the 3D hydrodynamical model was evaluated under two opposing wind systems and certain biases were detected. Strong velocities up to 1 m s(-1) were recorded in the east part due to the Venturi effect; a complementary system of vortices governed by Coriolis effect and west wind was observed in the west part, and horizontal stratification in the central part has been identified under typical wind condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Atlantic Water (AW) layer in the Arctic Basin is isolated from the atmosphere by the overlaying surface layer, yet observations have revealed that the velocities in this layer exhibit significant variations. Here analysis of a global ocean/sea ice model hindcast, complemented by experiments performed with an idealized process model, is used to investigate what controls the variability of AW circulation, with a focus on the role of wind forcing. The AW circulation carries the imprint of wind variations, both remotely over the Nordic and Barents Seas where they force the AW inflow variability, and locally over the Arctic Basin through the forcing of the wind-driven Beaufort Gyre, which modulates and transfers the wind variability to the AW layer. The strong interplay between the circulation within the surface and AW layers suggests that both layers must be considered to understand variability in either.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Observing, modelling and understanding the climate-scale variability of the deep water formation (DWF) in the North-Western Mediterranean Sea remains today very challenging. In this study, we first characterize the interannual variability of this phenomenon by a thorough reanalysis of observations in order to establish reference time series. These quantitative indicators include 31 observed years for the yearly maximum mixed layer depth over the period 1980–2013 and a detailed multi-indicator description of the period 2007–2013. Then a 1980–2013 hindcast simulation is performed with a fully-coupled regional climate system model including the high-resolution representation of the regional atmosphere, ocean, land-surface and rivers. The simulation reproduces quantitatively well the mean behaviour and the large interannual variability of the DWF phenomenon. The model shows convection deeper than 1000 m in 2/3 of the modelled winters, a mean DWF rate equal to 0.35 Sv with maximum values of 1.7 (resp. 1.6) Sv in 2013 (resp. 2005). Using the model results, the winter-integrated buoyancy loss over the Gulf of Lions is identified as the primary driving factor of the DWF interannual variability and explains, alone, around 50 % of its variance. It is itself explained by the occurrence of few stormy days during winter. At daily scale, the Atlantic ridge weather regime is identified as favourable to strong buoyancy losses and therefore DWF, whereas the positive phase of the North Atlantic oscillation is unfavourable. The driving role of the vertical stratification in autumn, a measure of the water column inhibition to mixing, has also been analyzed. Combining both driving factors allows to explain more than 70 % of the interannual variance of the phenomenon and in particular the occurrence of the five strongest convective years of the model (1981, 1999, 2005, 2009, 2013). The model simulates qualitatively well the trends in the deep waters (warming, saltening, increase in the dense water volume, increase in the bottom water density) despite an underestimation of the salinity and density trends. These deep trends come from a heat and salt accumulation during the 1980s and the 1990s in the surface and intermediate layers of the Gulf of Lions before being transferred stepwise towards the deep layers when very convective years occur in 1999 and later. The salinity increase in the near Atlantic Ocean surface layers seems to be the external forcing that finally leads to these deep trends. In the future, our results may allow to better understand the behaviour of the DWF phenomenon in Mediterranean Sea simulations in hindcast, forecast, reanalysis or future climate change scenario modes. The robustness of the obtained results must be however confirmed in multi-model studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The In Situ Analysis System (ISAS) was developed to produce gridded fields of temperature and salinity that preserve as much as possible the time and space sampling capabilities of the Argo network of profiling floats. Since the first global re-analysis performed in 2009, the system has evolved and a careful delayed mode processing of the 2002-2012 dataset has been carried out using version 6 of ISAS and updating the statistics to produce the ISAS13 analysis. This last version is now implemented as the operational analysis tool at the Coriolis data centre. The robustness of the results with respect to the system evolution is explored through global quantities of climatological interest: the Ocean Heat Content and the Steric Height. Estimates of errors consistent with the methodology are computed. This study shows that building reliable statistics on the fields is fundamental to improve the monthly estimates and to determine the absolute error bars. The new mean fields and variances deduced from the ISAS13 re-analysis and dataset show significant changes relative to the previous ISAS estimates, in particular in the southern ocean, justifying the iterative procedure. During the decade covered by Argo, the intermediate waters appear warmer and saltier in the North Atlantic and fresher in the Southern Ocean than in WOA05 long term mean. At inter-annual scale, the impact of ENSO on the Ocean Heat Content and Steric Height is observed during the 2006-2007 and 2009-2010 events captured by the network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

significant amount of Expendable Bathythermograph (XBT) data has been collected in the Mediterranean Sea since 1999 in the framework of operational oceanography activities. The management and storage of such a volume of data poses significant challenges and opportunities. The SeaDataNet project, a pan-European infrastructure for marine data diffusion, provides a convenient way to avoid dispersion of these temperature vertical profiles and to facilitate access to a wider public. The XBT data flow, along with the recent improvements in the quality check procedures and the consistence of the available historical data set are described. The main features of SeaDataNet services and the advantage of using this system for long-term data archiving are presented. Finally, focus on the Ligurian Sea is included in order to provide an example of the kind of information and final products devoted to different users can be easily derived from the SeaDataNet web portal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss the distributions and transports of the main water masses in the North Atlantic Subpolar Gyre (NASPG) for the mean of the period 2002–2010 (OVIDE sections 2002–2010 every other year), as well as the inter-annual variability of the water mass structure from 1997 (4x and METEOR sections) to 2010. The water mass structure of the NASPG, quantitatively assessed by means of an Optimum MultiParameter analysis (with 14 water masses), was combined with the velocity fields resulting from previous studies using inverse models to obtain the water mass volume transports. We also evaluate the relative contribution to the Atlantic Meridional Overturning Circulation (AMOC) of the main water masses characterizing the NASPG, identifying the water masses that contribute to the AMOC variability. The reduction of the magnitude of the upper limb of the AMOC between 1997 and the 2000s is associated with the reduction in the northward transport of the Central Waters. This reduction of the northward flow of the AMOC is partially compensated by the reduction of the southward flow of the lower limb of the AMOC, associated with the decrease in the transports of Polar Intermediate Water and Subpolar Mode Water (SPMW) in the Irminger Basin. We also decompose the flow over the Reykjanes Ridge from the East North Atlantic Basin to the Irminger Basin (9.4 ± 4.7 Sv) into the contributions of the Central Waters (2.1 ± 1.8 Sv), Labrador Sea Water (LSW, 2.4 ± 2.0 Sv), Subarctic Intermediate Water (SAIW, 4.0 ± 0.5 Sv) and Iceland–Scotland Overflow Water (ISOW, 0.9 ± 0.9 Sv). Once LSW and ISOW cross over the Reykjanes Ridge, favoured by the strong mixing around it, they leave the Irminger Basin through the deep-to-bottom levels. The results also give insights into the water mass transformations within the NASPG, such as the contribution of the Central Waters and SAIW to the formation of the different varieties of SPMW due to air–sea interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the north Atlantic subtropical gyre, the oceanic vertical structure of density is characterized by a region of rapid increase with depth. This layer is called the permanent pycnocline. The permanent pycnocline is found below a surface mode water ,which are ventilated every winter when penetrated locally by the mixed layer. Assessing the structure and variability of the permanent pycnocline is of a major interest in the understanding of the climate system because the pycnocline layer delimits important heat and anthropogenic reservoir. Moreover, the heat content structure translate into changes in the large scale stratification feature, such as the permanent pycnocline. We developed a new objective algorithm for the characterization of the large scale structure of the permanent pycnocline (OAC-P). Argo data have been used with OAC-P to provide a detailed description of the mean structure of the North-Atlantic subtropical pycnocline (e.g.: depth, thickness, temperature, salinity, density, potential vorticity). Results reveal a surprisingly complex structure with inhomogeneous properties. While the classical bowl shape of the pycnocline depth is captured, much more complex pycnocline structure emerges at the regional scale. In the southern recirculation gyre of the Gulf Stream Extension, the pycnocline is deep, thick, the maximum of stratification is found in the middle on the layer and follow an isopycnal surface. But local processes influence and modify this textbook description and the pycnocline is characterized by a vertically asymmetric structure and gradients in thermohaline properties. T/S distribution along the permanent pycnocline depth is complex and reveals a diversity of water masses resulting from mixing of different source waters. We will present the observed mean structure of the North-Atlantic subtropical permanent pycnocline and relate it to physical processes that constraint it.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past several decades, thousands of otoliths, bivalve shells, and scales have been collected for the purposes of age determination and remain archived in European and North American fisheries laboratories. Advances in digital imaging and computer software combined with techniques developed by tree-ring scientists provide a means by which to extract additional levels of information in these calcified structures and generate annually resolved (one value per year), multidecadal time-series of population-level growth anomalies. Chemical and isotopic properties may also be extracted to provide additional information regarding the environmental conditions these organisms experienced.Given that they are exactly placed in time, chronologies can be directly compared to instrumental climate records, chronologies from other regions or species, or time-seriesof other biological phenomena. In this way, chronologies may be used to reconstruct historical ranges of environmental variability, identify climatic drivers of growth, establish linkages within and among species, and generate ecosystem-level indicators. Following the first workshop in Hamburg, Germany, in December 2014, the second workshop on Growth increment Chronologies in Marine Fish: climate-ecosystem interactions in the North Atlantic (WKGIC2) met at the Mediterranean Institute for Advanced Studies headquarters in Esporles, Spain, on 18–22 April 2016, chaired by Bryan Black (USA) and Christoph Stransky (Germany).Thirty-six participants from fifteen different countries attended. Objectives were to i) review the applications of chronologies developed from growth-increment widths in the hard parts (otoliths, shells, scales) of marine fish and bivalve species ii) review the fundamentals of crossdating and chronology development, iii) discuss assumptions and limitations of these approaches, iv) measure otolith growth-increment widths in image analysis software, v) learn software to statistically check increment dating accuracy, vi) generate a growth increment chronology and relate it to climate indices, and vii) initiate cooperative projects or training exercises to commence after the workshop.The workshop began with an overview of tree-ring techniques of chronology development, including a hands-on exercise in cross dating. Next, we discussed the applications of fish and bivalve biochronologies and the range of issues that could be addressed. We then reviewed key assumptions and limitations, especially those associated with short-lived species for which there are numerous and extensive otolith archives in European fisheries labs. Next, participants were provided with images of European plaice otoliths from the North Sea and taught to measure increment widths in image analysis software. Upon completion of measurements, techniques of chronology development were discussed and contrasted to those that have been applied for long-lived species. Plaice growth time-series were then related to environmental variability using the KNMI Climate Explorer. Finally, potential future collaborations and funding opportunities were discussed, and there was a clear desire to meet again to compare various statistical techniques for chronology development using a range existing fish, bivalve, and tree growth-increment datasets. Overall, we hope to increase the use of these techniques, and over the long term, develop networks of biochronologies for integrative analyses of ecosystem functioning and relationships to long-term climate variability and fishing pressure.