2 resultados para Climate Changes
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
Reconstructing Northern Hemisphere ice-sheet oscillations and meltwater routing to the ocean is important to better understand the mechanisms behind abrupt climate changes. To date, research efforts have mainly focused on the North American (Laurentide) ice-sheets (LIS), leaving the potential role of the European Ice Sheet (EIS), and of the Scandinavian ice-sheet (SIS) in particular, largely unexplored. Using neodymium isotopes in detrital sediments deposited off the Channel River, we provide a continuous and well-dated record for the evolution of the EIS southern margin through the end of the last glacial period and during the deglaciation. Our results reveal that the evolution of EIS margins was accompanied with substantial ice recession (especially of the SIS) and simultaneous release of meltwater to the North Atlantic. These events occurred both in the course of the EIS to its LGM position (i.e., during Heinrich Stadial –HS– 3 and HS2; ∼31–29 ka and ∼26–23 ka, respectively) and during the deglaciation (i.e., at ∼22 ka, ∼20–19 ka and from 18.2 ± 0.2 to 16.7 ± 0.2 ka that corresponds to the first part of HS1). The deglaciation was discontinuous in character, and similar in timing to that of the southern LIS margin, with moderate ice-sheet retreat (from 22.5 ± 0.2 ka in the Baltic lowlands) as soon as the northern summer insolation increase (from ∼23 ka) and an acceleration of the margin retreat thereafter (from ∼20 ka). Importantly, our results show that EIS retreat events and release of meltwater to the North Atlantic during the deglaciation coincide with AMOC destabilisation and interhemispheric climate changes. They thus suggest that the EIS, together with the LIS, could have played a critical role in the climatic reorganization that accompanied the last deglaciation. Finally, our data suggest that meltwater discharges to the North Atlantic produced by large-scale recession of continental parts of Northern Hemisphere ice sheets during HS, could have been a possible source for the oceanic perturbations (i.e., AMOC shutdown) responsible for the marine-based ice stream purge cycle, or so-called HE's, that punctuate the last glacial period.
Resumo:
A 7.38 m-long sediment core was collected from the eastern part of the Rhone prodelta (NW Mediterranean) at 67 m water depth. A multi-proxy study (sedimentary facies, benthic foraminifera and ostracods, clay mineralogy, and major elements from XRF) provides a multi-decadal to century-scale record of climate and sea-level changes during the Holocene. The early Holocene is marked by alternative silt and clay layers interpreted as distal tempestites deposited in a context of rising sea level. This interval contains shallow infra-littoral benthic meiofauna (e.g. Pontocythere elongata, Elphidium spp., Quinqueloculina lata) and formed between ca. 20 and 50 m water depth. The middle Holocene (ca. 8.3 to 4.5 ka cal. BP), is characterized, at the core site, by a period of sediment starvation (accumulation rate of ca. 0.01 cm yr−1) resulting from the maximum landward shift of the shoreline and the Rhone outlet(s). From a sequence stratigraphic point of view, this condensed interval, about 35 cm-thick, is a Maximum Flooding Surface that can be identified on seismic profiles as the transition between delta retrogradation and delta progradation. It is marked by very distinct changes in all proxy records. Following the stabilization of the global sea level, the late Holocene is marked by the establishment of prodeltaic conditions at the core site, as shown by the lithofacies and by the presence of benthic meiofauna typical of the modern Rhone prodelta (e.g. Valvulineria bradyana, Cassidulina carinata, Bulimina marginata). Several periods of increased fluvial discharge are also emphasized by the presence of species commonly found in brackish and shallow water environments (e.g. Leptocythere). Some of these periods correspond to the multi-decadal to centennial late Holocene humid periods recognized in Europe (i.e. the 2.8 ka event and the Little Ice Age). Two other periods of increased runoffs at ca. 1.3 and 1.1 ka cal. BP are recognized, and are likely to reflect periods of regional climate deterioration that are observed in the Rhone watershed.