2 resultados para Chemical arms control.

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Mediterranean Sea constitutes a unique environment to study cold-seep ecosystems due to the presence of different geodynamic settings, from an active margin along the Mediterranean Ridge (MR) to a passive margin in the Nile Deep-Sea Fan (NDSF). We attempted to identify the structure of benthic communities associated with the Napoli and Amsterdam mud volcanoes (MVs) located on the MR and to establish the links between faunal distribution and environmental conditions at different spatial scales. Comparison between the 2 MVs revealed that the faunal distribution seemed to be mainly controlled by the characteristics of the microhabitats. On both geological structures, the variability between the different microhabitats was higher than the variability observed between replicates of the same microhabitat, and the distribution of macro-fauna was apparently linked to gradients in physico-chemical conditions. The peripheral sites from Napoli were generally more oxygenated and harboured lower species richness than the active sites. The reduced sediment microhabitat from Amsterdam presented the highest methane concentrations and was mainly colonised by symbiont-bearing vesicomyid bivalves and heterotrophic dorvilleid polychaetes. Overall, a higher taxonomic diversity was observed on Napoli. Sub-stratum type was hypothesised to be the second factor influencing faunal distribution. The results of this study highlight the high heterogeneity of faunal communities associated with seep ecosystems within this region and the need to pursue investigations at various spatial and temporal scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recommendation for Oxygen Measurements from Argo Floats: Implementation of In-Air-Measurement Routine to Assure Highest Long-term Accuracy As Argo has entered its second decade and chemical/biological sensor technology is improving constantly, the marine biogeochemistry community is starting to embrace the successful Argo float program. An augmentation of the global float observatory, however, has to follow rather stringent constraints regarding sensor characteristics as well as data processing and quality control routines. Owing to the fairly advanced state of oxygen sensor technology and the high scientific value of oceanic oxygen measurements (Gruber et al., 2010), an expansion of the Argo core mission to routine oxygen measurements is perhaps the most mature and promising candidate (Freeland et al., 2010). In this context, SCOR Working Group 142 “Quality Control Procedures for Oxygen and Other Biogeochemical Sensors on Floats and Gliders” (www.scor-int.org/SCOR_WGs_WG142.htm) set out in 2014 to assess the current status of biogeochemical sensor technology with particular emphasis on float-readiness, develop pre- and post-deployment quality control metrics and procedures for oxygen sensors, and to disseminate procedures widely to ensure rapid adoption in the community.