2 resultados para Cellular adhesion and migration

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteosarcoma is the most frequent malignant primary bone tumor characterized by a high potency to form lung metastases. In this study, the effect of three oversulfated low molecular weight marine bacterial exopolysaccharides (OS-EPS) with different molecular weights (4, 8 and 15 kDa) were first evaluated in vitro on human and murine osteosarcoma cell lines. Different biological activities were studied: cell proliferation, cell adhesion and migration, matrix metalloproteinase expression. This in vitro study showed that only the OS-EPS 15 kDa derivative could inhibit the invasiveness of osteosarcoma cells with an inhibition rate close to 90%. Moreover, this derivative was potent to inhibit both migration and invasiveness of osteosarcoma cell lines; had no significant effect on their cell cycle; and increased slightly the expression of MMP-9, and more highly the expression of its physiological specific tissue inhibitor TIMP-1. Then, the in vivo experiments showed that the OS-EPS 15 kDa derivative had no effect on the primary osteosarcoma tumor induced by osteosarcoma cell lines but was very efficient to inhibit the establishment of lung metastases in vivo. These results can help to better understand the mechanisms of GAGs and GAG-like derivatives in the biology of the tumor cells and their interactions with the bone environment to develop new therapeutic strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Collagen VI (COLVI), a protein ubiquitously expressed in connective tissues, is crucial for structural integrity, cellular adhesion, migration and survival. Six different genes are recognized in mammalians, encoding six COLVI-chains that assemble as two ‘short’ (α1, α2) and one ‘long’ chain (theoretically any one of α3–6). In humans, defects in the most widely expressed heterotrimer (α123), due to mutations in the COL6A1-3 genes, cause a heterogeneous group of neuromuscular disorders, collectively termed COLVI-related muscle disorders. Little is known about the function(s) of the recently described α4-6 chains and no mutations have been detected yet. In this study, we characterized two novel COLVI long chains in zebrafish that are most homologous to the mammalian α4 chain; therefore, we named the corresponding genes col6a4a and col6a4b. These orthologues represent ancestors of the mammalian Col6a4-6 genes. By in situ hybridization and RT-qPCR, we unveiled a distinctive expression kinetics for col6a4b, compared with the other col6a genes. Using morpholino antisense oligonucleotides targeting col6a4a, col6a4b and col6a2, we modelled partial and complete COLVI deficiency, respectively. All morphant embryos presented altered muscle structure and impaired motility. While apoptosis was not drastically increased, autophagy induction was defective in all morphants. Furthermore, motoneuron axon growth was abnormal in these morphants. Importantly, some phenotypical differences emerged between col6a4a and col6a4b morphants, suggesting only partial functional redundancy. Overall, our results further confirm the importance of COLVI in zebrafish muscle development and may provide important clues for potential human phenotypes associated with deficiency of the recently described COLVI-chains.