2 resultados para Bulk parameter approach
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
A new approach to retrieve sea surface wind speed (SWS) in tropical cyclones (TCs) from the Advanced Microwave Scanning Radiometer 2 (AMSR2) data is presented. Analysis of all six AMSR2 C- and X-band channel measurements over TCs is shown to efficiently help to separate the rain contribution. Corrected measurements at 6.9 and 10.65 GHz are then used to retrieve the SWS. Spatial and temporal collocation of AMSR2 and tropical rain measurement mission (TRMM) microwave instrument (TMI) data is then further used to empirically relate TMI rain rate (RR) product to RR estimates from AMSR2 in hurricanes. SWS estimates are validated with measurements from the stepped frequency microwave radiometer (SFMR). As further tested, more than 100 North Atlantic and North Pacific TCs are analyzed for the 2012–2014 period. Despite few particular cases, most SWS fields are in a very good agreement with TC center data on maximum wind speeds, radii of storm, and hurricane winds. As also compared, very high consistency between AMSR2 and L-band SMOS wind speed estimates are obtained, especially for the super typhoon Haiyan, to prove the high potential of AMSR2 measurements in TCs.
Resumo:
Statistical approaches to study extreme events require, by definition, long time series of data. In many scientific disciplines, these series are often subject to variations at different temporal scales that affect the frequency and intensity of their extremes. Therefore, the assumption of stationarity is violated and alternative methods to conventional stationary extreme value analysis (EVA) must be adopted. Using the example of environmental variables subject to climate change, in this study we introduce the transformed-stationary (TS) methodology for non-stationary EVA. This approach consists of (i) transforming a non-stationary time series into a stationary one, to which the stationary EVA theory can be applied, and (ii) reverse transforming the result into a non-stationary extreme value distribution. As a transformation, we propose and discuss a simple time-varying normalization of the signal and show that it enables a comprehensive formulation of non-stationary generalized extreme value (GEV) and generalized Pareto distribution (GPD) models with a constant shape parameter. A validation of the methodology is carried out on time series of significant wave height, residual water level, and river discharge, which show varying degrees of long-term and seasonal variability. The results from the proposed approach are comparable with the results from (a) a stationary EVA on quasi-stationary slices of non-stationary series and (b) the established method for non-stationary EVA. However, the proposed technique comes with advantages in both cases. For example, in contrast to (a), the proposed technique uses the whole time horizon of the series for the estimation of the extremes, allowing for a more accurate estimation of large return levels. Furthermore, with respect to (b), it decouples the detection of non-stationary patterns from the fitting of the extreme value distribution. As a result, the steps of the analysis are simplified and intermediate diagnostics are possible. In particular, the transformation can be carried out by means of simple statistical techniques such as low-pass filters based on the running mean and the standard deviation, and the fitting procedure is a stationary one with a few degrees of freedom and is easy to implement and control. An open-source MAT-LAB toolbox has been developed to cover this methodology, which is available at https://github.com/menta78/tsEva/(Mentaschi et al., 2016).