2 resultados para Biodiversity, Ensemble forecasting, Service-providing units, Species distribution models

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theoretical ecology predicts that heterogeneous habitats allow more species to co-exist in a given area. In the deep sea, biodiversity is positively linked with ecosystem functioning, suggesting that deep-seabed heterogeneity could influence ecosystem functions and the relationships between biodiversity and ecosystem functioning (BEF). To shed light on the BEF relationships in a heterogeneous deep seabed, we investigated variations in meiofaunal biodiversity, biomass and ecosystem efficiency within and among different seabed morphologies (e.g., furrows, erosional troughs, sediment waves and other depositional structures, landslide scars and deposits) in a narrow geo-morphologically articulated sector of the Adriatic Sea. We show that distinct seafloor morphologies are characterized by highly diverse nematode assemblages, whereas areas sharing similar seabed morphologies host similar nematode assemblages. BEF relationships are consistently positive across the entire region, but different seabed morphologies are characterised by different slope coefficients of the relationship. Our results suggest that seafloor heterogeneity, allowing diversified assemblages across different habitats, increases diversity and influence ecosystem processes at the regional scale, and BEF relationships at smaller spatial scales. We conclude that high-resolution seabed mapping and a detailed analysis of the species distribution at the habitat scale are crucial for improving management of goods and services delivered by deep-sea ecosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper applies a stochastic viability approach to a tropical small-scale fishery, offering a theoretical and empirical example of ecosystem-based fishery management approach that accounts for food security. The model integrates multi-species, multi-fleet and uncertainty as well as profitability, food production, and demographic growth. It is calibrated over the period 2006–2010 using monthly catch and effort data from the French Guiana's coastal fishery, involving thirteen species and four fleets. Using projections at the horizon 2040, different management strategies and scenarios are compared from a viability viewpoint, thus accounting for biodiversity preservation, fleet profitability and food security. The analysis shows that under certain conditions, viable options can be identified which allow fishing intensity and production to be increased to respond to food security requirements but with minimum impacts on the marine resources.