3 resultados para Berne, Canton de

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dead benthic foraminiferal faunas (> 150 μm) from the Rhône prodelta (Gulf of Lions, NW Mediterranean) were analysed at 41 stations (15–100 m water depth) sampled in June 2005 and September 2006, and compared to the living faunas investigated during previous studies at the same stations. The comparison between dead and living assemblages enhances the understanding of taphonomic processes that may modify the composition of the dead faunas in this area. We observed a loss of individuals from living to dead assemblages of species characterised by a fairly fragile test and therefore more prone to fragmentation or dissolution (e.g., Bolivina alata, Quinqueloculina tenuicollis). Allochthonous dead and/or live specimens may be transported to some parts of the prodelta, particularly the shallowest sites where hydrodynamic processes (i.e., river flood, storm swells, longshore currents) are more intense. These specimens may originate from relict deltaic structures (e.g., Elphidium spp. from the lobe of Bras de Fer) or from surrounding areas (e.g., Ammonia beccarii forma beccarii from the river). Opportunistic species (e.g., Bulimina marginata, Cassidulina carinata) characterised by high reproductive rates have much higher relative abundances in the dead than in the living fauna. Cluster analyses based on dead foraminiferal assemblages divide our study area into four main thanatofacies directly related to distinct local environmental conditions prevailing in the prodelta. Close to the river mouth, Ammonia beccarii forma beccarii and Ammonia tepida are found in sediments subject to a high riverine influence (i.e., bottom currents, high organic and inorganic material input of continental origin). Elphidium species are abundant in the silty-sandy relict deltaic lobe west of the river mouth which is characterised by strong longshore currents that disturb the benthic environment. Nonion fabum, Rectuvigerina phlegeri and Valvulineria bradyana are found along the coast west of the Rhône River mouth, in the area defined as the “river plume” thanatofacies. In the more stable and deeper prodeltaic area, species known to feed on fresh phytodetritus (e.g., Bulimina aculeata/marginata, C. carinata, Hyalinea balthica) dominate the faunas. Since only minor variations in species relative abundances and spatial distributional patterns are observed between the living and the dead faunas, we consider that our thanatofacies have not been influenced by substantial transport of dead tests. This suggests that fossil benthic foraminifera can provide a reliable tool for investigating the development of the palaeo-Rhône prodelta

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A dense grid of high- and very high resolution seismic data, together with piston cores and borehole data providing time constraints, enables us to reconstruct the history of the Bourcart canyon head in the western Mediterranean Sea during the last glacial/interglacial cycle. The canyon fill is composed of confined channel–levee systems fed by a series of successively active shelf fluvial systems, originating from the west and north. Most of the preserved infill corresponds to the interval between Marine Isotope Stage (MIS) 3 and the early deglacial (19 cal ka BP). Its deposition was strongly controlled by a relative sea level that impacted the direct fluvial/canyon connection. During a period of around 100 kyr between MIS 6 and MIS 2, the canyon “prograded” by about 3 km. More precisely, several parasequences can be identified within the canyon fill. They correspond to forced-regressed parasequences (linked to punctuated sea-level falls) topped by a progradational-aggradational parasequence (linked to a hypothetical 19-ka meltwater pulse (MWP)). The bounding surfaces between forced-regressed parasequences are condensed intervals formed during intervals of relative sediment starvation due to flooding episodes. The meandering pattern of the axial incision visible within the canyon head, which can be traced landward up to the Agly paleo-river, is interpreted as the result of hyperpycnal flows initiated in the river mouth in a context of increased rainfall and mountain glacier flushing during the early deglacial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 7.38 m-long sediment core was collected from the eastern part of the Rhone prodelta (NW Mediterranean) at 67 m water depth. A multi-proxy study (sedimentary facies, benthic foraminifera and ostracods, clay mineralogy, and major elements from XRF) provides a multi-decadal to century-scale record of climate and sea-level changes during the Holocene. The early Holocene is marked by alternative silt and clay layers interpreted as distal tempestites deposited in a context of rising sea level. This interval contains shallow infra-littoral benthic meiofauna (e.g. Pontocythere elongata, Elphidium spp., Quinqueloculina lata) and formed between ca. 20 and 50 m water depth. The middle Holocene (ca. 8.3 to 4.5 ka cal. BP), is characterized, at the core site, by a period of sediment starvation (accumulation rate of ca. 0.01 cm yr−1) resulting from the maximum landward shift of the shoreline and the Rhone outlet(s). From a sequence stratigraphic point of view, this condensed interval, about 35 cm-thick, is a Maximum Flooding Surface that can be identified on seismic profiles as the transition between delta retrogradation and delta progradation. It is marked by very distinct changes in all proxy records. Following the stabilization of the global sea level, the late Holocene is marked by the establishment of prodeltaic conditions at the core site, as shown by the lithofacies and by the presence of benthic meiofauna typical of the modern Rhone prodelta (e.g. Valvulineria bradyana, Cassidulina carinata, Bulimina marginata). Several periods of increased fluvial discharge are also emphasized by the presence of species commonly found in brackish and shallow water environments (e.g. Leptocythere). Some of these periods correspond to the multi-decadal to centennial late Holocene humid periods recognized in Europe (i.e. the 2.8 ka event and the Little Ice Age). Two other periods of increased runoffs at ca. 1.3 and 1.1 ka cal. BP are recognized, and are likely to reflect periods of regional climate deterioration that are observed in the Rhone watershed.