2 resultados para BASIS-SET CONVERGENCE
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
Personality traits have been studied for some decades in fish species. Yet, most often, studies focused on juveniles or adults. Thus, very few studies tried to demonstrate that traits could also be found in fish larvae. In this study, we aimed at identifying personality traits in Northern pike (Exos lucius) larvae. Twenty first-feeding larvae aged 21 days post hatch (16.1 +/− 0.4 mm in total length, mean +/− SD) were used to establish personality traits with two tests: a maze and a novel object. These tests are generally used for evaluating the activity and exploration of specimens as well as their activity and boldness, respectively. The same Northern pike twenty larvae were challenged in the two tests. Their performances were measured by their activity, their exploratory behaviour and the time spent in the different arms of the maze or near the novel object. Then, we used principal component analysis (PCA) and a hierarchical ascendant classification (HAC) for analysis of each data set separately. Finally, we used PCA reduction for the maze test data to analyse the relationship between a synthetic behavioural index (PCA1) and morphometric variables. Within each test, larvae could be divided in two sub groups, which exhibited different behavioural traits, qualified as bold (n = 7 for the maze test and n = 13 for the novel object test) or shy (n = 9 for the maze test and n = 11 for the novel object test). Nevertheless, in both tests, there was a continuum of boldness/shyness. Besides, some larvae were classified differently between the two tests but 40 % of the larvae showed cross context consistency and could be qualified as bold and/or proactive individuals. This study showed that it is possible to identify personality traits of very young fish larvae of a freshwater fish species.
Resumo:
The TOPEX/POSEIDON mission offers the first opportunity to observe rain cells over the ocean by a dual-frequency radar altimeter (TOPEX) and simultaneously observe their natural radiative properties by a three-frequency radiometer (TOPEX microwave radiometer (TMR)). This work is a feasibility study aimed at understanding the capability and potential of the active/passive TOPEX/TMR system for oceanic rainfall detection. On the basis of past experiences in rain flagging, a joint TOPEX/TMR rain probability index is proposed. This index integrates several advantages of the two sensors and provides a more reliable rain estimate than the radiometer alone. One year's TOPEX/TMR TMR data are used to test the performance of the index. The resulting rain frequency statistics show quantitative agreement with those obtained from the Comprehensive Ocean-Atmosphere Data Set (COADS) in the Intertropical Convergence Zone (ITCZ), while qualitative agreement is found for other regions of the world ocean. A recent finding that the latitudinal frequency of precipitation over the Southern Ocean increases steadily toward the Antarctic continent is confirmed by our result. Annual and seasonal precipitation maps are derived from the index. Notable features revealed include an overall similarity in rainfall pattern from the Pacific, the Atlantic, and the Indian Oceans and a general phase reversal between the two hemispheres, as well as a number of regional anomalies in terms of rain intensity. Comparisons with simultaneous Global Precipitation Climatology Project (GPCP) multisatellite precipitation rate and COADS rain climatology suggest that systematic differences also exist. One example is that the maximum rainfall in the ITCZ of the Indian Ocean appears to be more intensive and concentrated in our result compared to that of the GPCP. Another example is that the annual precipitation produced by TOPEX/TMR is constantly higher than those from GPCP and COADS in the extratropical regions of the northern hemisphere, especially in the northwest Pacific Ocean. Analyses of the seasonal variations of prominent rainy and dry zones in the tropics and subtropics show various behaviors such as systematic migration, expansion and contraction, merging and breakup, and pure intensity variations, The seasonality of regional features is largely influenced by local atmospheric events such as monsoon, storm, or snow activities. The results of this study suggest that TOPEX and its follow-on may serve as a complementary sensor to the special sensor microwave/imager in observing global oceanic precipitation.