8 resultados para Atmosphere-ocean interaction
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
The air-sea flux of greenhouse gases (e.g. carbon dioxide, CO2) is a critical part of the climate system and a major factor in the biogeochemical development of the oceans. More accurate and higher resolution calculations of these gas fluxes are required if we are to fully understand and predict our future climate. Satellite Earth observation is able to provide large spatial scale datasets that can be used to study gas fluxes. However, the large storage requirements needed to host such data can restrict its use by the scientific community. Fortunately, the development of cloud-computing can provide a solution. Here we describe an open source air-sea CO2 flux processing toolbox called the ‘FluxEngine’, designed for use on a cloud-computing infrastructure. The toolbox allows users to easily generate global and regional air-sea CO2 flux data from model, in situ and Earth observation data, and its air-sea gas flux calculation is user configurable. Its current installation on the Nephalae cloud allows users to easily exploit more than 8 terabytes of climate-quality Earth observation data for the derivation of gas fluxes. The resultant NetCDF data output files contain >20 data layers containing the various stages of the flux calculation along with process indicator layers to aid interpretation of the data. This paper describes the toolbox design, the verification of the air-sea CO2 flux calculations, demonstrates the use of the tools for studying global and shelf-sea air-sea fluxes and describes future developments.
Resumo:
The wave generation model based on the rapid distortion concept significantly underestimates empirical values of the wave growth rate. As suggested before, inclusion of the aerodynamic roughness modulations effect on the amplitude of the slope-correlated surface pressure could potentially reconcile this model approach with observations. This study explores the role of short-scale breaking modulations to amplify the growth rate of modulating longer waves. As developed, airflow separations from modulated breaking waves result in strong modulations of the turbulent stress in the inner region of the modulating waves. In turn, this leads to amplifying the slope-correlated surface pressure anomalies. As evaluated, such a mechanism can be very efficient for enhancing the wind-wave growth rate by a factor of 2-3.
Resumo:
Numerous components of the Arctic freshwater system (atmosphere, ocean, cryosphere, terrestrial hydrology) have experienced large changes over the past few decades, and these changes are projected to amplify further in the future. Observations are particularly sparse, both in time and space, in the Polar Regions. Hence, modeling systems have been widely used and are a powerful tool to gain understanding on the functioning of the Arctic freshwater system and its integration within the global Earth system and climate. Here, we present a review of modeling studies addressing some aspect of the Arctic freshwater system. Through illustrative examples, we point out the value of using a hierarchy of models with increasing complexity and component interactions, in order to dismantle the important processes at play for the variability and changes of the different components of the Arctic freshwater system and the interplay between them. We discuss past and projected changes for the Arctic freshwater system and explore the sources of uncertainty associated with these model results. We further elaborate on some missing processes that should be included in future generations of Earth system models and highlight the importance of better quantification and understanding of natural variability, amongst other factors, for improved predictions of Arctic freshwater system change.
Resumo:
Observing, modelling and understanding the climate-scale variability of the deep water formation (DWF) in the North-Western Mediterranean Sea remains today very challenging. In this study, we first characterize the interannual variability of this phenomenon by a thorough reanalysis of observations in order to establish reference time series. These quantitative indicators include 31 observed years for the yearly maximum mixed layer depth over the period 1980–2013 and a detailed multi-indicator description of the period 2007–2013. Then a 1980–2013 hindcast simulation is performed with a fully-coupled regional climate system model including the high-resolution representation of the regional atmosphere, ocean, land-surface and rivers. The simulation reproduces quantitatively well the mean behaviour and the large interannual variability of the DWF phenomenon. The model shows convection deeper than 1000 m in 2/3 of the modelled winters, a mean DWF rate equal to 0.35 Sv with maximum values of 1.7 (resp. 1.6) Sv in 2013 (resp. 2005). Using the model results, the winter-integrated buoyancy loss over the Gulf of Lions is identified as the primary driving factor of the DWF interannual variability and explains, alone, around 50 % of its variance. It is itself explained by the occurrence of few stormy days during winter. At daily scale, the Atlantic ridge weather regime is identified as favourable to strong buoyancy losses and therefore DWF, whereas the positive phase of the North Atlantic oscillation is unfavourable. The driving role of the vertical stratification in autumn, a measure of the water column inhibition to mixing, has also been analyzed. Combining both driving factors allows to explain more than 70 % of the interannual variance of the phenomenon and in particular the occurrence of the five strongest convective years of the model (1981, 1999, 2005, 2009, 2013). The model simulates qualitatively well the trends in the deep waters (warming, saltening, increase in the dense water volume, increase in the bottom water density) despite an underestimation of the salinity and density trends. These deep trends come from a heat and salt accumulation during the 1980s and the 1990s in the surface and intermediate layers of the Gulf of Lions before being transferred stepwise towards the deep layers when very convective years occur in 1999 and later. The salinity increase in the near Atlantic Ocean surface layers seems to be the external forcing that finally leads to these deep trends. In the future, our results may allow to better understand the behaviour of the DWF phenomenon in Mediterranean Sea simulations in hindcast, forecast, reanalysis or future climate change scenario modes. The robustness of the obtained results must be however confirmed in multi-model studies.
Resumo:
The transfer coefficients for momentum and heat have been determined for 10 m neutral wind speeds (U-10n) between 0 and 12 m/s using data from the Surface of the Ocean, Fluxes and Interactions with the Atmosphere (SOFIA) and Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiments. The inertial dissipation method was applied to wind and pseudo virtual temperature spectra from a sonic anemometer, mounted on a platform (ship) which was moving through the turbulence held. Under unstable conditions the assumptions concerning the turbulent kinetic energy (TKE) budget appeared incorrect. Using a bulk estimate for the stability parameter, Z/L (where Z is the height and L is the Obukhov length), this resulted in anomalously low drag coefficients compared to neutral conditions. Determining Z/L iteratively, a low rate of convergence was achieved. It was concluded that the divergence of the turbulent transport of TKE was not negligible under unstable conditions. By minimizing the dependence of the calculated neutral drag coefficient on stability, this term was estimated at about -0.65Z/L. The resulting turbulent fluxes were then in close agreement with other studies at moderate wind speed. The drag and exchange coefficients for low wind speeds were found to be C-en x 10(3) = 2.79U(10n)(-1) + 0.66 (U-10n < 5.2 m/s), C-en x 10(3) = C-hn x 10(3) = 1.2 (U-10n greater than or equal to 5.2 m/s), and C-dn x 10(3) = 11.7U(10n)(-2) + 0.668 (U-10n < 5.5 m/s), which imply a rapid increase of the coefficient values as the wind decreased within the smooth flow regime. The frozen turbulence hypothesis and the assumptions of isotropy and an inertial subrange were found to remain valid at these low wind speeds for these shipboard measurements. Incorporation of a free convection parameterization had little effect.
Resumo:
Interactions between surface waves and sea ice are thought to be an important, but poorly understood, physical process in the atmosphere-ice-ocean system. In this work, airborne scanning lidar was used to observe ocean waves propagating into the marginal ice zone (MIZ). These represent the first direct spatial measurements of the surface wave field in the polar MIZ. Data were compared against two attenuation models, one based on viscous dissipation and one based on scattering. Both models were capable of reproducing the measured wave energy. The observed wavenumber dependence of attenuation was found to be consistent with viscous processes, while the spectral spreading of higher wavenumbers suggested a scattering mechanism. Both models reproduced a change in peak direction due to preferential directional filtering. Floe sizes were recorded using co-located visible imagery, and their distribution was found to be consistent with ice breakup by the wave field.
Resumo:
Despite recent advances in ocean observing arrays and satellite sensors, there remains great uncertainty in the large-scale spatial variations of upper ocean salinity on the interannual to decadal timescales. Consonant with both broad-scale surface warming and the amplification of the global hydrological cycle, observed global multidecadal salinity changes typically have focussed on the linear response to anthropogenic forcing but not on salinity variations due to changes in the static stability and or variability due to the intrinsic ocean or internal climate processes. Here, we examine the static stability and spatiotemporal variability of upper ocean salinity across a hierarchy of models and reanalyses. In particular, we partition the variance into time bands via application of singular spectral analysis, considering sea surface salinity (SSS), the Brunt Väisälä frequency (N2), and the ocean salinity stratification in terms of the stabilizing effect due to the haline part of N2 over the upper 500m. We identify regions of significant coherent SSS variability, either intrinsic to the ocean or in response to the interannually varying atmosphere. Based on consistency across models (CMIP5 and forced experiments) and reanalyses, we identify the stabilizing role of salinity in the tropics—typically associated with heavy precipitation and barrier layer formation, and the role of salinity in destabilizing upper ocean stratification in the subtropical regions where large-scale density compensation typically occurs.
Resumo:
Repeated hydrographic sections provide critically needed data on and understanding of changes in basin-wide ocean CO2 chemistry over multi-decadal timescales. Here, high-quality measurements collected at twelve cruises carried out along the same track between 1991 and 2015 have been used to determine long-term changes in ocean CO2 chemistry and ocean acidification in the Irminger and Iceland basins of the North Atlantic Ocean. Trends were determined for each of the main water masses present and are discussed in the context of the basin-wide circulation. The pH has decreased in all water masses of the Irminger and Iceland basins over the past 25 years with the greatest changes in surface and intermediate waters (between −0.0010 ± 0.0001 and −0.0018 ± 0.0001 pH units yr−1). In order to disentangle the drivers of the pH changes, we decomposed the trends into their principal drivers: changes in temperature, salinity, total alkalinity (AT) and total dissolved inorganic carbon (both its natural and anthropogenic components). The increase in anthropogenic CO2 (Cant) was identified as the main agent of the pH decline, partially offset by AT increases. The acidification of intermediate waters caused by Cant uptake has been reinforced by the aging of the water masses over the period of our analysis. The pH decrease of the deep overflow waters in the Irminger basin was similar to that observed in the upper ocean and was mainly linked to the Cant increase, thus reflecting the recent contact of these deep waters with the atmosphere.