2 resultados para Atlantic Caribbean Margin
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
The structure of the Moroccan and Nova Scotia conjugate rifted margins is of key importance for understanding the Mesozoic break-up and evolution of the northern central Atlantic Ocean basin. Seven combined multichannel reflection (MCS) and wide-angle seismic (OBS) data profiles were acquired along the Atlantic Moroccan margin between the latitudes of 31.5° and 33° N during the MIRROR seismic survey in 2011, in order to image the transition from continental to oceanic crust, to study the variation in crustal structure and to characterize the crust under the West African Coast Magnetic Anomaly (WACMA). The data were modeled using a forward modeling approach. The final models image crustal thinning from 36 km thickness below the continent to approximately 8 km in the oceanic domain. A 100 km wide zone characterized by rough basement topography and high seismic velocities up to 7.4 km/s in the lower crust is observed westward of the West African Coast Magnetic Anomaly. No basin underlain by continental crust has been imaged in this region, as has been identified north of our study area. Comparison to the conjugate Nova Scotian margin shows a similar continental crustal thickness and layer geometry, and the existence of exhumed and serpentinized upper mantle material on the Canadian side only. The oceanic crustal thickness is lower on the Canadian margin.
Resumo:
A new 44 kyr long record of dinoflagellate (phytoplanktonic organisms) cysts (dinocysts) is presented from a marine sediment core collected on the Congolese margin with the aim of reconstructing past hydrological changes in the equatorial eastern Atlantic Ocean since Marine Isotopic Stage (MIS) 3. Our high-resolution dinocyst record indicates that significant temperature and moisture variations occurred across the glacial period, the last deglaciation and the Holocene. The use of specific dinocyst taxa, indicative of fluvial, upwelling and Benguela Current past environments for instance, provides insights into the main forcing mechanisms controlling palaeohydrological changes on orbital timescales. In particular, we are able, for the last 44 kyr, to correlate fluvial-sensitive taxa to monsoonal mechanisms related to precession minima–obliquity maxima combinations. While upwelling mechanisms appear as the main drivers for dinoflagellate productivity during MIS 2, dissolved nutrient-enriched Congo River inputs to the ocean also played a significant role in promoting dinoflagellate productivity between approximately 15.5 and 5 ka BP. Finally, this high-resolution dinocyst study permits us to precisely investigate the suborbital timing of the last glacial–interglacial termination, including an atypical warm and wet oceanic LGM signature, northern high-latitude abrupt climate change impacts in the equatorial eastern Atlantic, as well as a two-step decrease in moisture conditions during the Holocene at around 7–6 and 4–3.5 ka BP.