5 resultados para Archaean seafloor
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
Germanium (Ge) and Silicon (Si) exhibit similar geochemical behaviour in marine environments but are variably enriched in seafloor hydrothermal fluids relative to seawater. In this study, Ge isotope and Ge/Si ratio systematics were investigated in low temperature hydrothermal vents from Loihi Seamount (Pacific Ocean, 18°54’N, 155°15’W) and results were compared to high-temperature vents from the East Pacific Rise (EPR) at 9°50’N. Loihi offers the opportunity to understand contrasting Ge and Si behaviour in low temperature seafloor hydrothermal systems characterized by abundant Fe oxyhydroxide deposition at the seafloor. The results show that both Ge/Si and δ74/70Ge in hydrothermal fluids are fractionated relative to the basaltic host rocks. The enrichment in Ge vs. Si relative to fresh basalts, together with Ge isotope fractionation (Δ74/70Ge fluid-basalt up to 1.15 ‰ at EPR 9°50’N and 1.64 ‰ at Loihi) are best explained by the precipitation of minerals (e.g. quartz and Fe-sulfides) during higher temperature seawater-rock reactions in the subsurface. The study of Fe-rich hydrothermal deposits at Loihi, largely composed of Fe-oxyhydroxides, shows that Ge isotopes are also fractionated upon mineral precipitation at the seafloor. We obtained an average Ge isotope fractionation factor between Fe-oxyhydroxide (ferrihydrite) and dissolved Ge in the fluid of -2.0 ± 0.6 ‰ (2sd), and a maximum value of -3.6 ± 0.6 ‰ (2sd), which is consistent with recent theoretical and experimental studies. The study of a hydrothermal chimney at Bio 9 vent at EPR 9°50’N also demonstrates that Ge isotopes are fractionated by approximately -5.6 ± 0.6 ‰ (2sd) during precipitation of metal sulfides under hydrothermal conditions. Using combined Ge/Si and estimated Ge isotope signatures of Ge sinks and sources in seawater, we propose a preliminary oceanic budget of Ge which reveals that an important sink, referred as the “missing Ge sink”, may correspond to Ge sequestration into authigenic Fe-oxyhydroxides in marine sediments. This study shows that combining Ge/Si and δ74/70Ge systematics provides a useful tool to trace hydrothermal Ge and Si sources in marine environments and to understand formation processes of seafloor hydrothermal deposits.
Resumo:
An inactive vent field comprised of dead chimneys was discovered on the ultrafast East Pacific Rise (EPR) at 18°S during the research campaign NAUDUR with the R/V Le Nadir in December 1993. One of these chimneys was sampled, studied and found to be largely composed of silica-mineralized bacterial-like filaments. The filaments are inferred to be the result of microbial activity leading to silica (± Fe-oxyhydroxide) precipitation. The chimney grew from the most external layer (precipitated 226 ± 4 yr. B.P.) towards the central chimney conduit. Hydrothermal activity ceased 154 ± 13 yr. B.P. and the chimney conduit was completely sealed. Mixing between an end-member hydrothermal fluid and seawater explains the Sr–Nd isotopic composition of the chimney. Seawater was the major source of Sr to the chimney, whereas the dominant Nd source was the local mid-ocean ridge basalt (MORB) leached by the hydrothermal fluids. The mixing scenarios point to a dynamic hydrothermal system with fluctuating fluid compositions. The proportion of seawater within the venting fluid responsible for the precipitation of the silica chimney layers varied between 94 and 85%. Pb-isotope data indicates that all of the Pb in the chimney was derived from the underlying MORB. The precipitation temperatures of the chimney layers varied between 55 and 71 °C, and were a function of the seawater/end-member hydrothermal fluid mixing ratio. δ30Si correlates with the temperature of precipitation implying that temperature is one of the major controls of the Si-isotope composition of the chimney. Concentrations of elements across the chimney wall were a function of this mixing ratio and the composition of the end-member hydrothermal fluid. The inward growth of the chimney wall and accompanying decrease in wall permeability resulted in an inward decrease in the seawater/hydrothermal fluid mixing ratio, which in turn exerted a control on the concentrations of the elements supplied mainly by the hydrothermal fluids. The silica chimney is significantly enriched in U, likely a result of bacterial concentration of U from the seawater-dominated vent fluid. The chimney is poor in rare earth elements (REE). It inherited its REE distribution patterns from the parent end-member hydrothermal fluids. The dilution of the hydrothermal fluid with over 85% seawater could not obliterate the particular REE features (positive Eu anomaly) of the hydrothermal fluids.
Resumo:
Theoretical ecology predicts that heterogeneous habitats allow more species to co-exist in a given area. In the deep sea, biodiversity is positively linked with ecosystem functioning, suggesting that deep-seabed heterogeneity could influence ecosystem functions and the relationships between biodiversity and ecosystem functioning (BEF). To shed light on the BEF relationships in a heterogeneous deep seabed, we investigated variations in meiofaunal biodiversity, biomass and ecosystem efficiency within and among different seabed morphologies (e.g., furrows, erosional troughs, sediment waves and other depositional structures, landslide scars and deposits) in a narrow geo-morphologically articulated sector of the Adriatic Sea. We show that distinct seafloor morphologies are characterized by highly diverse nematode assemblages, whereas areas sharing similar seabed morphologies host similar nematode assemblages. BEF relationships are consistently positive across the entire region, but different seabed morphologies are characterised by different slope coefficients of the relationship. Our results suggest that seafloor heterogeneity, allowing diversified assemblages across different habitats, increases diversity and influence ecosystem processes at the regional scale, and BEF relationships at smaller spatial scales. We conclude that high-resolution seabed mapping and a detailed analysis of the species distribution at the habitat scale are crucial for improving management of goods and services delivered by deep-sea ecosystems.
Resumo:
Hydrothermal sulfide chimneys located along the global system of oceanic spreading centers are habitats for microbial life during active venting. Hydrothermally extinct, or inactive, sulfide deposits also host microbial communities at globally distributed sites. The main goal of this study is to describe Fe transformation pathways, through precipitation and oxidation-reduction (redox) reactions, and examine transformation products for signatures of biological activity using Fe mineralogy and stable isotope approaches. The study includes active and inactive sulfides from the East Pacific Rise 9 degrees 50'N vent field. First, the mineralogy of Fe(III)-bearing precipitates is investigated using microprobe X-ray absorption spectroscopy (RXAS) and X-ray diffraction (mu XRD). Second, laser-ablation (LA) and micro-drilling (MD) are used to obtain spatially-resolved Fe stable isotope analysis by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS). Eight Fe -bearing minerals representing three mineralogical classes are present in the samples: oxyhydroxides, secondary phyllosilicates, and sulfides. For Fe oxyhydroxides within chimney walls and layers of Si-rich material, enrichments in both heavy and light Fe isotopes relative to pyrite are observed, yielding a range of delta Fe-57 values up to 6 parts per thousand. Overall, several pathways for Fe transformation are observed. Pathway 1 is characterized by precipitation of primary sulfide minerals from Fe(II)aq-rich fluids in zones of mixing between vent fluids and seawater. Pathway 2 is also consistent with zones of mixing but involves precipitation of sulfide minerals from Fe(II)aq generated by Fe(III) reduction. Pathway 3 is direct oxidation of Fe(II) aq from hydrothermal fluids to form Fe(III) precipitates. Finally, Pathway 4 involves oxidative alteration of pre-existing sulfide minerals to form Fe(III). The Fe mineralogy and isotope data do not support or refute a unique biological role in sulfide alteration. The findings reveal a dynamic range of Fe transformation pathways consistent with a continuum of micro-environments having variable redox conditions. These micro-environments likely support redox cycling of Fe and S and are consistent with culture-dependent and -independent assessments of microbial physiology and genetic diversity of hydrothermal sulfide deposits.