4 resultados para Antioxidant defenses
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
This study compares the antioxidant and antimicrobial transcriptional expression of blue shrimps reared according to two different systems, BioFloc Technology (BFT) and Clear sea Water (CW) and their differential responses when facing an experimental sublethal hydrogen peroxide stress. After 30 days of rearing, juvenile shrimps were exposed to H2O2 stress at a concentration of 30 ppm during 6 hours. The oxidative stress caused by H2O2 was examined in the digestive glands of the shrimp, in which antioxidant enzyme (AOE) and antimicrobial peptide (AMP) gene expression were analysed by quantitative real-time PCR. Results showed that rearing conditions did not affect the expression of genes encoding AOEs or AMPs. However, H2O2 stress induced a differential response in expression between shrimps from the two rearing treatments (BFT and CW). Comparative analysis of the expression profiles indicates that catalase transcripts were significantly upregulated by H2O2 stress for BFT shrimps while no change was observed for CW shrimps. In contrast, H2O2 caused down-regulation of superoxide dismutase and glutathione transferase transcripts and of the three AMP transcripts studied (penaeidin 2 and 3, and crustin) for CW shrimps, while no effect was observed on BFT shrimp transcript levels. These results suggested that BFT shrimps maintained antioxidant and AMP responses after stress and therefore can effectively protect their cells against oxidative stress, while CW shrimp immune competence seems to decrease after stress.
Resumo:
Harmful algal blooms of Alexandrium spp. dinoflagellates regularly occur in French coastal waters contaminating shellfish. Studies have demonstrated that toxic Alexandrium spp. disrupt behavioural and physiological processes in marine filter-feeders, but molecular modifications triggered by phycotoxins are less well understood. This study analyzed the mRNA levels of 7 genes encoding antioxidant/detoxifying enzymes in gills of Pacific oysters (Crassostrea gigas) exposed to a cultured, toxic strain of A. minutum, a producer of paralytic shellfish toxins (PST) or fed Tisochrysis lutea (T. lutea, formerly Isochrysis sp., clone Tahitian (T. iso)), a non-toxic control diet, in four repeated experiments. Transcript levels of sigma-class glutathione S-transferase (GST), glutathione reductase (GR) and ferritin (Fer) were significantly higher in oysters exposed to A. minutum compared to oysters fed T. lutea. The detoxification pathway based upon glutathione (GSH)-conjugation of toxic compounds (phase II) is likely activated, and catalyzed by GST. This system appeared to be activated in gills probably for the detoxification of PST and/or extra-cellular compounds, produced by A. minutum. GST, GR and Fer can also contribute to antioxidant functions to prevent cellular damage from increased reactive oxygen species (ROS) originating either from A. minutum cells directly, from oyster hemocytes during immune response, or from other gill cells as by-products of detoxification.
Resumo:
The aim of this study was to determine biofloc contributions to the antioxidant status and lipid nutrition of broodstock of Litopenaeus stylirostris in relationship with their reproductive performance and the health of larvae produced. Shrimp broodstock reared with Biofloc technology (BFT) compared to Clear water (CW) exhibited a higher health status with (i) a better final survival rate during the reproduction period (52.6% in CW against 79.8% in BFT); (ii) higher glutathione level (GSH) and total antioxidant status (TAS), reduced oxidized/reduced glutathione ratio and a higher spawning rate and frequency as well as higher gonado-somatic index and number of spawned eggs. Finally, larvae from broodstock from BFT exhibited higher survival rates at the Zoe 2 (+ 37%) and Post Larvae 1 (+ 51%) stages when compared with those from females from CW treatment. The improved reproductive performance of the broodstock and higher larvae survival rate resulting from BFT treatment may be linked to the dietary supplement obtained by the shrimp from natural productivity during BFT rearing. Indeed, our study confirms that biofloc particulates represent a potential source of dietary glutathione and a significant source of lipids, particularly essential phospholipids and n-3 highly unsaturated fatty acids (HUFA) for shrimps. Thus, broodstock from BFT treatment accumulated phospholipids, n-3 HUFA and arachidonic acid, which are necessary for vitellogenesis, embryogenesis and pre-feeding larval development. The predominant essential fatty acids, arachidonic acid (ARA), eicopentaeonic acid (EPA) and docosahexaenoic acid (DHA), had levels in the eggs that were, respectively, 2.5, 2.8 and 3 fold higher for BFT compared to the CW treatment. Statement of Relevance Today, the influence of biofloc technology on shrimp broodstock is not enough described and no information was available on the larvae quality. Moreover, two key pieces of new information emerge from the present study. Firstly, biofloc is a source of further dietary lipids that can act as energetic substrates, but also as a source of phospholipids and essential fatty acids necessary to sustain reproduction, embryonic and larval development. Second, improving the reproduction of the broodstock also leads to an improvement in the quality of the larvae. We think that our research is new and important to increase knowledge on biofloc topic. We believe the paper will contribute to the development of more efficient and therefore more sustainable systems.
Resumo:
Here, we assess the physiological effects induced by environmental concentrations of pesticides in Pacific oyster Crassostrea gigas. Oysters were exposed for 14 d to trace levels of metconazole (0.2 and 2 mu g/L), isoproturon (0.1 and 1 mu g/L), or both in a mixture (0.2 and 0.1 mu g/L, respectively). Exposure to trace levels of pesticides had no effect on the filtration rate, growth, and energy reserves of oysters. However, oysters exposed to metconazole and isoproturon showed an overactivation of the sensing-kinase AMP-activated protein kinase alpha (AMPK alpha), a key enzyme involved in energy metabolism and more particularly glycolysis. In the meantime, these exposed oysters showed a decrease in hexokinase and pyruvate kinase activities, whereas 2-DE proteomic revealed that fructose-1,6-bisphosphatase (F-1,6-BP), a key enzyme of gluconeogenesis, was upregulated. Activities of antioxidant enzymes were higher in oysters exposed to the highest pesticide concentrations. Both pesticides enhanced the superoxide dismutase activity of oysters. Isoproturon enhanced catalase activity, and metconazole enhanced peroxiredoxin activity. Overall, our results show that environmental concentrations of metconazole or isoproturon induced subtle changes in the energy and antioxidant metabolisms of oysters.