3 resultados para AltiKa

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The major drawback of Ka band, operating frequency of the AltiKa altimeter on board SARAL, is its sensitivity to atmospheric liquid water. Even light rain or heavy clouds can strongly attenuate the signal and distort the signal leading to erroneous geophysical parameters estimates. A good detection of the samples affected by atmospheric liquid water is crucial. As AltiKa operates at a single frequency, a new technique based on the detection by a Matching Pursuit algorithm of short scale variations of the slope of the echo waveform plateau has been developed and implemented prelaunch in the ground segment. As the parameterization of the detection algorithm was defined using Jason-1 data, the parameters were re-estimated during the cal-val phase, during which the algorithm was also updated. The measured sensor signal-to-noise ratio is significantly better than planned, the data loss due to attenuation by rain is significantly smaller than expected (<0.1%). For cycles 2 to 9, the flag detects about 9% of 1Hz data, 5.5% as rainy and 3.5 % as backscatter bloom (or sigma0 bloom). The results of the flagging process are compared to independent rain data from microwave radiometers to evaluate its performances in term of detection and false alarms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SARAL/AltiKa GDR-T are analyzed to assess the quality of the significant wave height (SWH) measurements. SARAL along-track SWH plots reveal cases of erroneous data, more or less isolated, not detected by the quality flags. The anomalies are often correlated with strong attenuation of the Ka-band backscatter coefficient, sensitive to clouds and rain. A quality test based on the 1Hz standard deviation is proposed to detect such anomalies. From buoy comparison, it is shown that SARAL SWH is more accurate than Jason-2, particularly at low SWH, and globally does not require any correction. Results are better with open ocean than with coastal buoys. The scatter and the number of outliers are much larger for coastal buoys. SARAL is then compared with Jason-2 and Cryosat-2. The altimeter data are extracted from the global altimeter SWH Ifremer data base, including specific corrections to calibrate the various altimeters. The comparison confirms the high quality of SARAL SWH. The 1Hz standard deviation is much less than for Jason-2 and Cryosat-2, particularly at low SWH. Furthermore, results show that the corrections applied to Jason-2 and to Cryosat-2, in the data base, are efficient, improving the global agreement between the three altimeters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wind-generated waves in the Kara, Laptev, and East-Siberian Seas are investigated using altimeter data from Envisat RA-2 and SARAL-AltiKa. Only isolated ice-free zones had been selected for analysis. Wind seas can be treated as pure wind-generated waves without any contamination by ambient swell. Such zones were identified using ice concentration data from microwave radiometers. Altimeter data, both significant wave height (SWH) and wind speed, for these areas were further obtained for the period 2002-2012 using Envisat RA-2 measurements, and for 2013 using SARAL-AltiKa. Dependencies of dimensionless SWH and wavelength on dimensionless wave generation spatial scale are compared to known empirical dependencies for fetch-limited wind wave development. We further check sensitivity of Ka- and Ku-band and discuss new possibilities that AltiKa's higher resolution can open.