2 resultados para Age estimation
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
Close similarities have been found between the otoliths of sea-caught and laboratory-reared larvae of the common sole Solea solea (L.), given appropriate temperatures and nourishment of the latter. But from hatching to mouth formation. and during metamorphosis, sole otoliths have proven difficult to read because the increments may be less regular and low contrast. In this study, the growth increments in otoliths of larvae reared at 12 degrees C were counted by light microscopy to test the hypothesis of daily deposition, with some results verified using scanning electron microscopy (SEM), and by image analysis in order to compare the reliability of the 2 methods in age estimation. Age was first estimated (in days posthatch) from light micrographs of whole mounted otoliths. Counts were initiated from the increment formed at the time of month opening (Day 4). The average incremental deposition rate was consistent with the daily hypothesis. However, the light-micrograph readings tended to underestimate the mean ages of the larvae. Errors were probably associated with the low-contrast increments: those deposited after the mouth formation during the transition to first feeding, and those deposited from the onset of eye migration (about 20 d posthatch) during metamorphosis. SEM failed to resolve these low-contrast areas accurately because of poor etching. A method using image analysis was applied to a subsample of micrograph-counted otoliths. The image analysis was supported by an algorithm of pattern recognition (Growth Demodulation Algorithm, GDA). On each otolith, the GDA method integrated the growth pattern of these larval otoliths to averaged data from different radial profiles, in order to demodulate the exponential trend of the signal before spectral analysis (Fast Fourier Transformation, FFT). This second method both allowed more precise designation of increments, particularly for low-contrast areas, and more accurate readings but increased error in mean age estimation. The variability is probably due to a still rough perception of otolith increments by the GDA method, counting being achieved through a theoretical exponential pattern and mean estimates being given by FFT. Although this error variability was greater than expected, the method provides for improvement in both speed and accuracy in otolith readings.
Resumo:
Validation of the age determination procedure using otoliths of European anchovy in the Bay of Biscay was achieved by monitoring very strong year-classes in successive spring catches and surveys, as well as the seasonal occurrence of edge types. Historical corroboration of the ageing method was obtained by cross-correlation between successive age groups by year-classes in catches and surveys (1987–2013). Summary annual growth in length is also presented. Yearly annuli consist of a hyaline zone (either single or composite) and a wide opaque zone, disrupted occasionally by some typical checks (mainly at age-0 and age-1 at peak spawning time). Age determination, given a date of capture, requires knowledge of the typical annual growth pattern of otoliths, their seasonal edge formation by ages and the most typical checks. Most opaque growth occurs in summer and is minimal (translucent) in winter. Opaque zone formation begins earlier in younger fish (in spring), and this helps distinguish age-1 from age-2+.