2 resultados para Adolescent Coping Strategies Scale (ACSS)

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper applies a stochastic viability approach to a tropical small-scale fishery, offering a theoretical and empirical example of ecosystem-based fishery management approach that accounts for food security. The model integrates multi-species, multi-fleet and uncertainty as well as profitability, food production, and demographic growth. It is calibrated over the period 2006–2010 using monthly catch and effort data from the French Guiana's coastal fishery, involving thirteen species and four fleets. Using projections at the horizon 2040, different management strategies and scenarios are compared from a viability viewpoint, thus accounting for biodiversity preservation, fleet profitability and food security. The analysis shows that under certain conditions, viable options can be identified which allow fishing intensity and production to be increased to respond to food security requirements but with minimum impacts on the marine resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water and protein dynamics on a nanometer scale were measured by quasi-elastic neutron scattering in the piezophile archaeon Thermococcus barophilus and the closely related pressure-sensitive Thermococcus kodakarensis, at 0.1 and 40 MPa. We show that cells of the pressure sensitive organism exhibit higher intrinsic stability. Both the hydration water dynamics and the fast protein and lipid dynamics are reduced under pressure. In contrast, the proteome of T. barophilus is more pressure sensitive than that of T. kodakarensis. The diffusion coefficient of hydration water is reduced, while the fast protein and lipid dynamics are slightly enhanced with increasing pressure. These findings show that the coupling between hydration water and cellular constituents might not be simply a master-slave relationship. We propose that the high flexibility of the T. barophilus proteome associated with reduced hydration water may be the keys to the molecular adaptation of the cells to high hydrostatic pressure.