2 resultados para Accelerator mass spectrometry (AMS)

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep-sea ferromanganese nodules accumulate trace elements from seawater and underlying sediment porewaters during the growth of concentric mineral layers over millions of years. These trace elements have the potential to record past ocean geochemical conditions. The goal of this study was to determine whether Fe mineral alteration occurs and how the speciation of trace elements responds to alteration over ∼3.7 Ma of marine ferromanganese nodule (MFN) formation, a timeline constrained by estimates from 9Be/10Be concentrations in the nodule material. We determined Fe-bearing phases and Fe isotope composition in a South Pacific Gyre (SPG) nodule. Specifically, the distribution patterns and speciation of trace element uptake by these Fe phases were investigated. The time interval covered by the growth of our sample of the nodule was derived from 9Be/10Be accelerator mass spectrometry (AMS). The composition and distribution of major and trace elements were mapped at various spatial scales, using micro-X-ray fluorescence (μXRF), electron microprobe analysis (EMPA), and inductively coupled plasma mass spectrometry (ICP-MS). Fe phases were characterized by micro-extended X-ray absorption fine structure (μEXAFS) spectroscopy and micro-X-ray diffraction (μXRD). Speciation of Ti and V, associated with Fe, was measured using micro-X-ray absorption near edge structure (μXANES) spectroscopy. Iron isotope composition (δ56/54Fe) in subsamples of 1-3 mm increments along the radius of the nodule was determined with multiple-collector ICP-MS (MC-ICP-MS). The SPG nodule formed through primarily hydrogeneous inputs at a rate of 4.0 ± 0.4 mm/Ma. The nodule exhibited a high diversity of Fe mineral phases: feroxyhite (δ-FeOOH), goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and poorly ordered ferrihydrite-like phases. These findings provide evidence that Fe oxyhydroxides within the nodule undergo alteration to more stable phases over millions of years. Trace Ti and V were spatially correlated with Fe and found to be adsorbed to Fe-bearing minerals. Ti/Fe and V/Fe ratios, and Ti and V speciation, did not vary along the nodule radius. The δ56/54Fe values, when averaged over sample increments representing 0.25 to 0.75 Ma, were homogeneous within uncertainty along the nodule radius, at -0.12 ± 0.07 ‰ (2sd, n=10). Our results indicate that the Fe isotope composition of the nodule remained constant during nodule growth and that mineral alteration did not affect the primary Fe isotope composition of the nodule. Furthermore, the average δ56/54Fe value of -0.12 ‰ we find is consistent with Fe sourced from continental eolian particles (dust). Despite mineral alteration, the trace element partitioning of Ti and V, and Fe isotope composition, do not appear to change within the sensitivity of our measurements. These findings suggest that Fe oxyhydroxides within hydrogenetic ferromanganese nodules are out of geochemical contact with seawater once they are covered by subsequent concentric mineral layers. Even though Fe-bearing minerals are altered, trace element ratios, speciation and Fe isotope composition are preserved within the nodule.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurement of marine algal toxins has traditionally focussed on shellfish monitoring while, over the last decade, passive sampling has been introduced as a complementary tool for exploratory studies. Since 2011, liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been adopted as the EU reference method (No.15/2011) for detection and quantitation of lipophilic toxins. Traditional LC-MS approaches have been based on low-resolution mass spectrometry (LRMS), however, advances in instrument platforms have led to a heightened interest in the use of high-resolution mass spectrometry (HRMS) for toxin detection. This work describes the use of HRMS in combination with passive sampling as a progressive approach to marine algal toxin surveys. Experiments focused on comparison of LRMS and HRMS for determination of a broad range of toxins in shellfish and passive samplers. Matrix effects are an important issue to address in LC-MS; therefore, this phenomenon was evaluated for mussels (Mytilus galloprovincialis) and passive samplers using LRMS (triple quadrupole) and HRMS (quadrupole time-of-flight and Orbitrap) instruments. Matrix-matched calibration solutions containing okadaic acid and dinophysistoxins, pectenotoxin, azaspiracids, yessotoxins, domoic acid, pinnatoxins, gymnodimine A and 13-desmethyl spirolide C were prepared. Similar matrix effects were observed on all instruments types. Most notably, there was ion enhancement for pectenotoxins, okadaic acid/dinophysistoxins on one hand, and ion suppression for yessotoxins on the other. Interestingly, the ion selected for quantitation of PTX2 also influenced the magnitude of matrix effects, with the sodium adduct typically exhibiting less susceptibility to matrix effects than the ammonium adduct. As expected, mussel as a biological matrix, quantitatively produced significantly more matrix effects than passive sampler extracts, irrespective of toxin. Sample dilution was demonstrated as an effective measure to reduce matrix effects for all compounds, and was found to be particularly useful for the non-targeted approach. Limits of detection and method accuracy were comparable between the systems tested, demonstrating the applicability of HRMS as an effective tool for screening and quantitative analysis. HRMS offers the advantage of untargeted analysis, meaning that datasets can be retrospectively analysed. HRMS (full scan) chromatograms of passive samplers yielded significantly less complex data sets than mussels, and were thus more easily screened for unknowns. Consequently, we recommend the use of HRMS in combination with passive sampling for studies investigating emerging or hitherto uncharacterised toxins.