2 resultados para Absorption Efficiency
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
The study of maturation and spawning of the oyster is part of a research program to investigate the summer mortalities of the oysters, Crassostrea gigas in Marennes-Oléron Bay. Four maturity stages were simultaneously obtained by diet and thermal conditioning (immature, low maturation, mature and post-spawning stages). Measurements of clearance, filtration, absorption and respiration rates allowed a calculation of the scope for growth and hence an estimation of the oyster's energetic budget at various maturity stages. Male and female oysters had similar physiological responses. The filtration rate ranged from 2.4 to 2.6 1.h(-1) at the early stages of maturation and decreased to 1.8 1.h.' during the maturity stage. Growth rate resulting from gonad development did not induce filtration rate changes. Mature 2.5 and 1.5-year-old oysters showed a negative energy budget reaching -15 and -90 J.h(-1) respectively. By contrast, non-ripe oysters had scope for growth in the range 110 to 170 J.h(-1). A negative energy budget during the high maturation stage resulted from a reduced absorption efficiency. A new allometric relationship for the respiration model of C. gigas was defined during vitellogenesis with a 0.574 coefficient value. Based on Our results, the oyster's physiological weakness during vitellogenesis should be considered as a part of explanation for spring and summer mortalities of cultured oysters in Marennes-Oléron Bay.
Resumo:
Feeding strategies and digestive capacities can have important implications for variation in energetic pathways associated with ecological and economically important traits, such as growth or reproduction in bivalve species. Here, we investigated the role of amylase in the digestive processes of Crassostrea gigas, using in vivo RNA interference. This approach also allowed us to investigate the relationship between energy intake by feeding and gametogenesis in oysters. Double-stranded (ds)RNA designed to target the two α-amylase genes A and B was injected in vivo into the visceral mass of oysters at two doses. These treatments caused significant reductions in mean mRNA levels of the amylase genes: −50.7% and −59% mRNA A, and −71.9% and −70.6% mRNA B in 15 and 75 µg dsRNA-injected oysters, respectively, relative to controls. Interestingly, reproductive knock-down phenotypes were observed for both sexes at 48 days post-injection, with a significant reduction of the gonad area (−22.5% relative to controls) and germ cell under-proliferation revealed by histology. In response to the higher dose of dsRNA, we also observed reductions in amylase activity (−53%) and absorption efficiency (−5%). Based on these data, dynamic energy budget modeling showed that the limitation of energy intake by feeding that was induced by injection of amylase dsRNA was insufficient to affect gonadic development at the level observed in the present study. This finding suggests that other driving mechanisms, such as endogenous hormonal modulation, might significantly change energy allocation to reproduction, and increase the maintenance rate in oysters in response to dsRNA injection.