4 resultados para ALTIMETER DATA

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

70.00% 70.00%

Publicador:

Resumo:

SARAL/AltiKa GDR-T are analyzed to assess the quality of the significant wave height (SWH) measurements. SARAL along-track SWH plots reveal cases of erroneous data, more or less isolated, not detected by the quality flags. The anomalies are often correlated with strong attenuation of the Ka-band backscatter coefficient, sensitive to clouds and rain. A quality test based on the 1Hz standard deviation is proposed to detect such anomalies. From buoy comparison, it is shown that SARAL SWH is more accurate than Jason-2, particularly at low SWH, and globally does not require any correction. Results are better with open ocean than with coastal buoys. The scatter and the number of outliers are much larger for coastal buoys. SARAL is then compared with Jason-2 and Cryosat-2. The altimeter data are extracted from the global altimeter SWH Ifremer data base, including specific corrections to calibrate the various altimeters. The comparison confirms the high quality of SARAL SWH. The 1Hz standard deviation is much less than for Jason-2 and Cryosat-2, particularly at low SWH. Furthermore, results show that the corrections applied to Jason-2 and to Cryosat-2, in the data base, are efficient, improving the global agreement between the three altimeters.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Wind-generated waves in the Kara, Laptev, and East-Siberian Seas are investigated using altimeter data from Envisat RA-2 and SARAL-AltiKa. Only isolated ice-free zones had been selected for analysis. Wind seas can be treated as pure wind-generated waves without any contamination by ambient swell. Such zones were identified using ice concentration data from microwave radiometers. Altimeter data, both significant wave height (SWH) and wind speed, for these areas were further obtained for the period 2002-2012 using Envisat RA-2 measurements, and for 2013 using SARAL-AltiKa. Dependencies of dimensionless SWH and wavelength on dimensionless wave generation spatial scale are compared to known empirical dependencies for fetch-limited wind wave development. We further check sensitivity of Ka- and Ku-band and discuss new possibilities that AltiKa's higher resolution can open.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Observing system experiments (OSEs) are carried out over a 1-year period to quantify the impact of Argo observations on the Mercator Ocean 0.25° global ocean analysis and forecasting system. The reference simulation assimilates sea surface temperature (SST), SSALTO/DUACS (Segment Sol multi-missions dALTimetrie, d'orbitographie et de localisation précise/Data unification and Altimeter combination system) altimeter data and Argo and other in situ observations from the Coriolis data center. Two other simulations are carried out where all Argo and half of the Argo data are withheld. Assimilating Argo observations has a significant impact on analyzed and forecast temperature and salinity fields at different depths. Without Argo data assimilation, large errors occur in analyzed fields as estimated from the differences when compared with in situ observations. For example, in the 0–300 m layer RMS (root mean square) differences between analyzed fields and observations reach 0.25 psu and 1.25 °C in the western boundary currents and 0.1 psu and 0.75 °C in the open ocean. The impact of the Argo data in reducing observation–model forecast differences is also significant from the surface down to a depth of 2000 m. Differences between in situ observations and forecast fields are thus reduced by 20 % in the upper layers and by up to 40 % at a depth of 2000 m when Argo data are assimilated. At depth, the most impacted regions in the global ocean are the Mediterranean outflow, the Gulf Stream region and the Labrador Sea. A significant degradation can be observed when only half of the data are assimilated. Therefore, Argo observations matter to constrain the model solution, even for an eddy-permitting model configuration. The impact of the Argo floats' data assimilation on other model variables is briefly assessed: the improvement of the fit to Argo profiles do not lead globally to unphysical corrections on the sea surface temperature and sea surface height. The main conclusion is that the performance of the Mercator Ocean 0.25° global data assimilation system is heavily dependent on the availability of Argo data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Over the past decade, the diminishing Arctic sea ice has impacted the wave field, which depends on the ice-free ocean and wind. This study characterizes the wave climate in the Arctic spanning 1992–2014 from a merged altimeter data set and a wave hindcast that uses CFSR winds and ice concentrations from satellites as input. The model performs well, verified by the altimeters, and is relatively consistent for climate studies. The wave seasonality and extremes are linked to the ice coverage, wind strength, and wind direction, creating distinct features in the wind seas and swells. The altimeters and model show that the reduction of sea ice coverage causes increasing wave heights instead of the wind. However, trends are convoluted by interannual climate oscillations like the North Atlantic Oscillation (NAO) and Pacific Decadal Oscillation. In the Nordic Greenland Sea the NAO influences the decreasing wind speeds and wave heights. Swells are becoming more prevalent and wind-sea steepness is declining. The satellite data show the sea ice minimum occurs later in fall when the wind speeds increase. This creates more favorable conditions for wave development. Therefore we expect the ice freeze-up in fall to be the most critical season in the Arctic and small changes in ice cover, wind speeds, and wave heights can have large impacts to the evolution of the sea ice throughout the year. It is inconclusive how important wave–ice processes are within the climate system, but selected events suggest the importance of waves within the marginal ice zone.