3 resultados para 3D gravity modelling

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study presents an assessment of the contributions of various primary producers to the global annual production and N/P cycles of a coastal system, namely the Arcachon Bay, by means of a numerical model. This 3D model fully couples hydrodynamic with ecological processes and simulates nitrogen, silicon and phosphorus cycles as well as phytoplankton, macroalgae and seagrasses. Total annual production rates for the different components were calculated for different years (2005, 2007 and 2009) during a time period of drastic reduction in seagrass beds since 2005. The total demand of nitrogen and phosphorus was also calculated and discussed with regards to the riverine inputs. Moreover, this study presents the first estimation of particulate organic carbon export to the adjacent open ocean. The calculated annual net production for the Arcachon Bay (except microphytobenthos, not included in the model) ranges between 22,850 and 35,300 tons of carbon. The main producers are seagrasses in all the years considered with a contribution ranging from 56% to 81% of global production. According to our model, the -30% reduction in seagrass bed surface between 2005 and 2007, led to an approximate 55% reduction in seagrass production, while during the same period of time, macroalgae and phytoplankton enhanced their productions by about +83% and +46% respectively. Nonetheless, the phytoplankton production remains about eightfold higher than the macroalgae production. Our results also highlight the importance of remineralisation inside the Bay, since riverine inputs only fulfill at maximum 73% nitrogen and 13% phosphorus demands during the years 2005, 2007 and 2009. Calculated advection allowed a rough estimate of the organic matter export: about 10% of the total production in the bay was exported, originating mainly from the seagrass compartment, since most of the labile organic matter was remineralised inside the bay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sedimentary architecture of basins and passive margins is determined by a complex interaction of parameters, including subsidence, eustasy, and sediment supply. A quantification of the post-rift (20 Ma-0 Ma) vertical movements of the Gulf of Lion (West Mediterranean) is proposed here based on the stratigraphic study of sedimentary paleomarkers using a large 3D grid of reflection seismic data, correlations with existing drillings, and refraction data. Post-rift subsidence was measured by the direct use of sedimentary geometries analysed in 3D and validated by numerical stratigraphic modelling. Three domains of subsidence were found: on the continental shelf and slope, subsidence corresponds to a seaward tilting with different amplitudes, whereas the deep basin subsides purely vertically. We show that these domains fit with the deeper crustal domains highlighted by previous geophysical data, and that post-break-up subsidence follows the initial hinge lines of the rifting phase. Subsidence rates are quantified on each domain for each stratigraphic interval. At a constant distance from the rotational hinge line, the Plio-Quaternary subsidence rate is constant on the shelf overall. Conversely, Miocene subsidence rates are very different on the eastern and western shelves. Stratigraphic simulations focused on the Messinian salinity crisis (MSC) were also performed. Their results are discussed together with our post-rift subsidence estimates in order to provide ideas and hypotheses for future detailed quantifications of Miocene subsidence, including isostatic readjustments linked to the MSC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deep seismic reflection profile Western Approaches Margin (WAM) cuts across the Goban Spur continental margin, located southwest of Ireland. This non-volcanic margin is characterized by a few tilted blocks parallel to the margin. A volcanic sill has been emplaced on the westernmost tilted block. The shape of the eastern part of this sill is known from seismic data, but neither seismic nor gravity data allow a precise determination of the extent and shape of the volcanic body at depth. Forward modelling and inversion of magnetic data constrain the shape of this volcanic sill and the location of the ocean-continent transition. The volcanic body thickens towards the ocean, and seems to be in direct contact with the oceanic crust. In the contact zone, the volcanic body and the oceanic magnetic layer display approximately the same thickness. The oceanic magnetic layer is anomalously thick immediately west of the volcanic body, and gradually thins to reach more typical values 40 km further to the west. The volcanic sill would therefore represent the very first formation of oceanic crust, just before or at the continental break-up. The ocean-continent transition is limited to a zone 15 km wide. The continental magnetic layer seems to thin gradually oceanwards, as does the continental crust, but no simple relation is observed between their respective thinnings.