2 resultados para 3D and 2D background modelling
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
The sedimentary architecture of basins and passive margins is determined by a complex interaction of parameters, including subsidence, eustasy, and sediment supply. A quantification of the post-rift (20 Ma-0 Ma) vertical movements of the Gulf of Lion (West Mediterranean) is proposed here based on the stratigraphic study of sedimentary paleomarkers using a large 3D grid of reflection seismic data, correlations with existing drillings, and refraction data. Post-rift subsidence was measured by the direct use of sedimentary geometries analysed in 3D and validated by numerical stratigraphic modelling. Three domains of subsidence were found: on the continental shelf and slope, subsidence corresponds to a seaward tilting with different amplitudes, whereas the deep basin subsides purely vertically. We show that these domains fit with the deeper crustal domains highlighted by previous geophysical data, and that post-break-up subsidence follows the initial hinge lines of the rifting phase. Subsidence rates are quantified on each domain for each stratigraphic interval. At a constant distance from the rotational hinge line, the Plio-Quaternary subsidence rate is constant on the shelf overall. Conversely, Miocene subsidence rates are very different on the eastern and western shelves. Stratigraphic simulations focused on the Messinian salinity crisis (MSC) were also performed. Their results are discussed together with our post-rift subsidence estimates in order to provide ideas and hypotheses for future detailed quantifications of Miocene subsidence, including isostatic readjustments linked to the MSC.
Resumo:
Understanding the natural evolution of a river–delta–sea system is important to develop a strong scientific basis for efficient integrated management plans. The distribution of sediment fluxes is linked with the natural connection between sediment source areas situated in uplifting mountain chains and deposition in plains, deltas and, ultimately, in the capturing oceans and seas. The Danube River–western Black Sea is one of the most active European systems in terms of sediment re-distribution that poses significant societal challenges. We aim to derive the tectonic and sedimentological background of human-induced changes in this system and discuss their interplay. This is obtained by analysing the tectonic and associated vertical movements, the evolution of relevant basins and the key events affecting sediment routing and deposition. The analysis of the main source and sink areas is focused in particular on the Miocene evolution of the Carpatho-Balkanides, Dinarides and their sedimentary basins including the western Black Sea. The vertical movements of mountains chains created the main moments of basin connectivity observed in the Danube system. Their timing and effects are observed in sediments deposited in the vicinity of gateways, such as the transition between the Pannonian/Transylvanian and Dacian basins and between the Dacian Basin and western Black Sea. The results demonstrate the importance of understanding threshold conditions driving rapid basins connectivity changes superposed over the longer time scale of tectonic-induced vertical movements associated with background erosion and sedimentation. The spatial and temporal scale of such processes is contrastingly different and challenging. The long-term patterns interact with recent or anthropogenic induced modifications in the natural system and may result in rapid changes at threshold conditions that can be quantified and predicted. Their understanding is critical because of frequent occurrence during orogenic evolution, as commonly observed in the Mediterranean area and discussed elsewhere.