23 resultados para yield management
em Aquatic Commons
Resumo:
Mangrove, a tidal wetland, is a good example of complex land and water system whose resource attributes is neither fully understood from an ecological perspective nor valued comprehensively in economic terms. With increased ecological and social perception of the functions of wetlands, the utility and relative values will increase. The perception, however, varies from society to society. It must be recognized that mangrove forests differ greatly in local conditions and in their ability to produce a wide variety of economic products. What may be highly productive strategy for one country may have little meaning to its neighbor. Therefore, it becomes essential that from among diversity of potential uses of the mangrove environment, specific uses will have to be decided, and management plan developed on site, or area specific basis. It is therefore necessary to arrive at a balance between the views of the ecologists and economists on the management of mangroves. Biological conservation should encompass resource management in the sense that integrity of the biological and physical attributes of the resource base should be sustained and man-induced management practices should not alter an ecosystem to the extent that biological production is eliminated. Sustained yield management for food, fiber and fuel would serve to sustain local fisheries while generating new economic enterprises. This requires the recognition of mangrove environment as a resource with economic value, and managed according to local conditions and national priorities.
Resumo:
The National Fisheries Resources Research Institute (NaFIRRI), the Directorate of Fisheries Resources (DiFR), the Local Government fisheries staff and those from the Beach Management Units (BMUs) of the riparian districts to Lake Victoria regularly and jointly conduct Frame and Catch Assessment Surveys. The information obtained is used to guide fisheries management and development. We reveal the trends in the commercial fish catch landings and fishing effort on the Uganda side of Lake Victoria, over a 15 year period (2000-2015) and provide the underlying factors to the observed changes. The contribution of the high value large size species (Nile perch and Tilapia) to the commercial catch of Lake Victoria has significantly reduced while that of the low value small size species, Mukene has increased over a ten year (2005-2015)period. The information is intended to update and sensitize the key stakeholders on the status of the Lake Victoria fisheries. In addition, the information provided is expected to guide policy formulation and management planning by the fisheries managers at all levels including the BMUs and Landing Site Management Committees (LSMCs), the Local government fisheries staff and the Directorate of Fisheries Resources. The information is anticipated to create awareness among the lakeside fisher communities to reverse the current trend in fish declines.
Resumo:
A summary of the inventory survey of Nigeria inland waters is presented. The survey reveals that Kano State tops the list in reservoir development with an existing water surface area of about 42,773 ha, while Anambra State has the least with about 38 hectares. No reservoir was recorded for Lagos and Rivers States. However, in aspects of existing fish ponds, a total of about 471 ha was recorded for Plateau State and about 5 ha for Niger State. Preliminary estimates of Nigeria's fish yield potentials based on established production records of comparable water bodies in the tropics, at different levels of management, show that the available water mass in the country, estimated at about 12.5 million hectares, could yield a minimum of about 334,214 metric tonnes (m.t.) of fish per annum with little or no management and a maximum of about 511,703 metric tonnes per annum with adequate management. Comparison of the potential yields from inland sources with the projected fish production in Nigeria (1981-1985) based on supply and demand statistics shows that potential yield from inland sources even at a low level of management is relatively higher than the projected inland production and more than double the observed production. The variation between the potential and the observed fish yields in the country has been attributed to the absolute lack of management strategies for our various inland waters. The paper elaborates on possible management strategies for various categories of inland waters as a prelude towards increased fish production in the country
Resumo:
Details are given of a study carried out in Nigeria, to introduce the practice of fish-cum-rice culture, using Sarotherodon galilaeus. Two plots each measuring 360m super(2) were used for this study and were compared with the farmer's two plots measuring 300m super(2) and 350m super(2). The plots were modified and had two central canals. Rice seedlings were transplanted into the plots after 19 days using a planting distance of 20 x 20cm. Three rice seedlings were planted per hole, using rice variety FARO 40, and grown for 90 days. About 240 and 180 S. galilaeus fingerlings of mean weight of 30g and 26g were stocked in the two experimental plots, respectively. They were fed with pelleted feed of 25% C.P. and monitored for 100 days. A yield of 22.8kg was obtained in plot A while 15.66kg was obtained in plot B. A rice yield of 250kg (i.e 5 bags) was obtained in each of the plots. The results obtained were compared with plots with no fish
Resumo:
The management of Lake Victoria is a high priority to the riparian countries that benefit directly from its resources. Management regulations have been formulated and implemented with the aim of maintaining the lake's ecological quality as well as sustaining fisheries exploitation for economic gain. Results indicate, however, that the regulations have not been successful in maintaining the state of the lake's ecosystem nor the fisheries. There has been a continuing decline in fish catches as well as declining biodiversity. Currently, the riparian countries are considering the introduction of a co-management regime as an alternative managerial strategy to address the lake's problems. In this paper it is argued that the failure of the former management regulations was because ownership of the lake was not clearly defined. It is further argued that even if co-management were to be successfully instituted, it will yield very minimal results if the problem of ownership is not properly addressed. This paper explores the ownership status of the lake based on data collected in Tanzania, and examines the relationship between, and significance of, ownership and co-management. The research makes recommendations for how these concepts can contribute to an integrated management of the lake
Resumo:
The environmental conditions of Kainji Lake from 1971/72 to date appear to have stabilized to a large extent, judging from the similarity of physico-chemical parameters investigated in this study over the period. Solar radiation (as reflected in variation in temperature) and pH have remained largely constant over the years, while conductivity (index of nutrient enrichment), though significantly higher in 1995/96, could be described as sporadic and needs further monitoring to ascertain its trend in the lake. While water transparency and dissolved oxygen were higher in 1971/72 compared to the other years, these increases cannot be said to be overwhelming. The lower transparency in 1995/96 was due to the exceptional flood of that year and may have also accounted for the poorer dissolved oxygen concentration compared to the other years due to its impact on photosynthesis. There is no evidence from this study to indicate that primary productivity has increased over the years. Consequently, the observed increase in fish yield by the KLFPP from CAS, which is corroborated by estimates from the MEI, cannot be supported on the basis of improved photosynthetic production. The phenomenal high levels of conductivity recorded during certain periods in 1995 (600 mu mhos cm super(-1)) are hitherto unknown in the lake and may indicate a trend towards nutrient enrichment. However, it is premature at this stage to conclude on its long-term impact on primary production and consequently, on fish yield. Secondly, the notion of overfishing in the 80s (Ita, 1993), may need to be further examined as low or dwindling catches could be due to a number of factors among which are the level of fishing effort, the type and efficiency of gears and the intensity of sampling. It would appear that with the intervention of KLFPP, the better management of the lake's fisheries would increase the current level of catch. It also needs to be examined how much of the clupeid fisheries, which is now known to account for a substantial proportion of the total fish yield in Kainji Lake, was included in the sampling of the 80s. (PDF contains 43 pages)
Resumo:
This paper summarizes current information on the American shad, Alosa sapidissima, and describes the species and its fishery. Emphasis is placed on (1) life history of the fish, (2) condition of the fishery by State and water areas in 1960 compared to 1896 when the last comprehensive description was made, (3) factors responsible for decline in abundance, and (4) management measures. The shad fishery has changed little over the past three-quarters of a century, except in magnitude of yield. Types of shad-fishing gear have remained relatively unchanged, but many improvements have been made in fishing techniques, mostly to achieve economy. In 1896 the estimated catch was more than 50 million pounds. New Jersey ranked first in production with about 14 million pounds, and Virginia second with 11 million pounds. In 1960 the estimated catch was slightly more than 8 million pounds. Maryland ranked first in production with slightly more than 1.5 million pounds, Virginia second with slightly less than 1.4 million pounds, and North Carolina third with about 1.3 million pounds. Biological and economic factors blamed for the decline in shad abundance, such as physical changes in the environment, construction of dams, pollution, over-fishing, and natural cycles of abundance, are discussed. Also discussed are methods used for the rehabilitation and management of the fishery, such as artificial propagation, installation of fish-passage facilities at impoundments, and fishing regulations. With our present knowledge, we can manage individual shad populations; but, we probably cannot restore the shad to its former peak of abundance.
Resumo:
Causes and impact of the Philippine small pelagic fishery sector problems are presented together with the proposed solutions from fisheries and external sectors. The results of the biological and economic analysis of the small pelagic fishery in the Philippines lead to two conclusions: First, small pelagic fish stocks are subjected to levels of fishing effort far beyond that necessary to generate Maximum Sustainable Yield (MSY) let alone Maximum Economic Yield (MEY). Second, and as a result, both sectors are sustaining economic losses (negative economic rents) implying inefficiencies in the use of labor and capital in the small pelagic fishery. Solutions to the problems of overexploitation will rest not only within the fishery sector, but, more importantly, in sectors outside its traditional realm. The underlying causes of fisheries resource over exploitation are also discussed.
Resumo:
Sustainability of benefits from capture fisheries has been a concern of fisheries scientists for a long time. The development of fisheries management models reflects the historical debate (from maximum sustainable yield to maximum economic yield, and so on) of what benefits are valued and need to be sustained. Social and anthropological research needs an increased emphasis on bio-socioeconomic models to effectively determine directions for fisheries management.
Resumo:
We summarize the life history characteristics of silvergray rockfish (Sebastes brevispinis) based on commercial fishery data and biological samples from British Columbia waters. Silvergray rockfish occupy bottom depths of 100−300 m near the edge of the continental shelf. Within that range, they appear to make a seasonal movement from 100−200 m in late summer to 180−280 m in late winter. Maximum observed age in the data set was 81 and 82 years for females and males, respectively. Maximum length and round weight was 73 cm and 5032 g for females and 70 cm and 3430 g for males. The peak period of mating lasted from December to February and parturition was concentrated from May to July. Both sexes are 50% mature by 9 or 10 years and 90% are mature by age 16 for females and age 13 years for males. Fecundity was estimated from one sample of 132 females and ranged from 181,000 to 1,917,000 oocytes and there was no evidence of batch spawning. Infection by the copepod parasite Sarcotaces arcticus appears to be associated with lower fecundity. Sexual maturation appears to precede recruitment to the trawl fishery; thus spawning stock biomass per recruit analysis (SSB/R) indicates that a F50% harvest target would correspond to an F of 0.072, 20% greater than M (0.06). Fishery samples may bias estimates of age at maturity but a published meta-data analysis, in conjunction with fecundity data, independently supports an early age of maturity in relation to recruitment. Although delayed recruitment to the fishery may provide more resilience to exploitation, managers may wish to forego maximizing economic yield from this species. Silvergray rockfish are a relatively minor but unavoidable part of the multiple species trawl catch. Incorrectly “testing” the resilience of one species may cause it to be the weakest member of the specie
Resumo:
Yellowfin sole, Pleuronectes asper, is the second most abundant flatfish in the North Pacific Ocean and is most highly concentrated in the eastern Bering Sea. It has been a target species in the eastern Bering Sea since the mid-1950's, initially by foreign distant-water fisheries but more recently by U.S. fisheries. Annual commercial catches since 1959 have ranged from 42,000 to 554,000 metric tons (t). Yellowfin sole is a relatively small flatfish averaging about 26 cm in length and 200 g in weight in commercial catches. It is distributed from nearshore waters to depths of about 100 m in the eastern Bering Sea in summer, but moves to deeper water in winter to escape sea ice. Yellowfin sole is a benthopelagic feeder. It is a longlived species (>20 years) with a correspondingly low natural mortality rate estimated at 0.12. After being overexploited during the early years of the fishery and suffering a substantial decline in stock abundance, the resource has recovered and is currently in excellent condition. The biomass during the 1980's may have been as high as, if not higher than, that at the beginning of the fishery. Based on results of demersal trawl surveys and two age structured models, the current exploitable biomass has been estimated to range between 1.9 and 2.6 million t. Appropriate harvest strategies were investigated under a range of possible recruitment levels. The recommended harvest level was calculated by multiplying the yield derived from the FOI harvest level (161 g at F = 0.14) hy an average recruitment value resulting in a commercial harvest of 276,900 t, or about 14% of the estimated exploitable biomass.
Resumo:
The organization of coastwide management programs for Atlantic menhaden, Brevoortia tyrannus, and Gulf menhaden, B. patronus, are described. Recent assessments of the status of the Atlantic and Gulf menhaden stocks are summarized. Estimates of population size and fishing mortalities are obtained from virtual population analysis, and are used in determining spawner-recruit relationships, spawning stock ratios, yield-per-recruit, and surplus production. Management issues are addressed in the framework of assessment results.
Resumo:
Biological implications of two managment options (the closed corridor and the recommended shortened season (Option 7) options) for the Atlantic menhaden, Brevoortia tyrannus, fishery are reported based on purse-seine landings and port sampling data from 1970 to 1984 and captain's daily fishing reports from 1978 to 1982. Large catches of age-O menhaden raise concern for growth overfishing. Area-specific yield-per-recruit analyses are used to investigate the biological consequences of these management options. The closed corridor option indicates coastwide gains in yield-per-recruit ranging from 0.3 to 7.2% depending on changes in fishing activity with most areas showing gains. The shortened fishing season indicates coastwide gains in yield per recruit ranging from O. 4 to 10.2% depending onf ishing year with most geographic areas showing gains. The shortened fishing season option offers the greatest gains when large numbers ofy oung menhaden would be caught late in the fishing year, while gains from the closed corridor option depend on how the fishing fleet responds to that management plan. The shortened season offers greater potential coastwide gains to the fishery, but also may result in greater losses to the North Carolina fall fishery. The analytical approach is applicable to the management of other coastal migratory fish stocks that fall under the Atlantic States Marine Fisheries Commission or other interstate management groups.
Resumo:
Invasive species generate significant environmental and economic costs, with maintenance management constituting a major expenditure. Such costs are generated by invasive Indo-Pacific lionfish (Pterois spp.) that further threaten already stressed coral reefs in the western Atlantic Ocean and Caribbean Sea. This brief review documents rapid range expansion and potential impacts of lionfish. In addition, preliminary experimental data from targeted removals contribute to debates about maintenance management. Removals at sites off Little Cayman Island shifted the size frequency distribution of remaining lionfish toward smaller individuals whose stomachs contained less prey and fewer fish. Fewer lionfish and decreased predation on threatened grouper, herbivores and other economically and ecologically important fishes represent key steps toward protecting reefs. However, complete evaluation of success requires long-term data detailing immigration and recruitment by lionfish, compensatory growth and reproduction of lionfish, reduced direct effects on prey assemblages, and reduced indirect effects mediated by competition for food. Preventing introductions is the best way to avoid impacts from invasive species and early detection linked to rapid response ranks second. Nevertheless, results from this case study suggest that targeted removals represent a viable option for shifting direct impacts of invasive lionfish away from highly vulnerable components of ecosystems.