6 resultados para yellow luminescence
em Aquatic Commons
Resumo:
Larval kelp (Sebastes atrovirens), brown (S. auriculatus), and blackand-yellow (S. chrysomelas) rockfish were reared from known adults, to preflexion stage, nine days after birth for S. chrysomelas, to late postflexion stage for S. atrovirens, and to pelagic juvenile stage for S. auriculatus. Larval S. atrovirens and S. chrysomelas were about 4.6 mm body length (BL) and S. auriculatus about 5.2 mm BL at birth. Both S. atrovirens and S. auriculatus underwent notochord flexion at about 6–9 mm BL. Sebastes atrovirens transform to the pelagic juvenile stage at about 14–16 mm BL and S. auriculatus transformed at ca. 25 mm BL. Early larvae of all three species were characterized by melanistic pigment dorsally on the head, on the gut, on most of the ventral margin of the tail, and in a long series on the dorsal margin of the tail. Larval S. atrovirens and S. auriculatus developed a posterior bar on the tail during the flexion or postflexion stage. In S. atrovirens xanthic pigment resembled the melanistic pattern throughout larval development. Larval S. auriculatus lacked xanthophores except on the head until late preflexion stage, when a pattern much like the melanophore pattern gradually developed. Larval S. chrysomelas had extensive xanthic pigmentation dorsally, but none ventrally, in preflexion stage. All members of the Sebastes subgenus Pteropodus (S. atrovirens, S. auriculatus, S. carnatus, S. caurinus, S. chrysomelas, S. dalli, S. maliger, S. nebulosus, S. rastrelliger) are morphologically similar and all share the basic melanistic pigment pattern described here. Although the three species reared in this study can be distinguished on the basis of xanthic pigmentation, it seems unlikely that it will be possible to reliably identify field-collected larvae to species using traditional morphological and melanistic pigmentation characters. (PDF file contains 36 pages.)
Resumo:
DNA techniques are increasingly used as diagnostic tools in many fields and venues. In particular, a relatively new application is its use as a check for proper advertisement in markets and on restaurant menus. The identification of fish from markets and restaurants is a growing problem because economic practices often render it cost-effective to substitute one species for another. DNA sequences that are diagnostic for many commercially important fishes are now documented on public databases, such as the National Center for Biotechnology Information’s (NCBI) GenBank.1 It is now possible for most genetics laboratories to identify the species from which a tissue sample was taken without sequencing all the possible taxa it might represent.
Resumo:
Organoleptic observations of quick, slow and block frozen, glazed and stored fish were recorded at regular intervals. Glazing was renewed at intervals of four weeks. Development of yellow discolouration in the case of white pomfret was followed. Keeping quality of glazed fish was better than unglazed frozen fish. Yellow discolouration could be controlled by ascorbic acid for 42 months and by a mixture of sodium chloride and glucose for 52 months.
Resumo:
This study was conducted using 150 fish of Clarias gariepinus to investigate the growth performance and nutrient utilization of Clarias gariepinus fed five treatment diets containing varying inclusion level of fermented unsieved maize. The diets were grouped into CT, T1, T2, T3, and T4 with inclusion levels of 25%, 50%, 75%, and 100% of fermented unsieved maize respectively. Highest weight gain was recorded in T4 with value of 10.24 and lowest weight was recorded in CT with 9.17. High FCR were observed in T2 with value of 0.70 and lower value was observed in T4 with value of 0.62. While, T2, T3, and T4 have highest survival rates with values of 90% in each treatment CT and T1 recorded 80% and 70% respectively. There was a significant (p< 0.05) difference between the food conversion ratios treatment T4 with the best value and other treatments. There was a significant (p< 0.05) difference between the levels of fermented unsieved maize inclusion and the specific growth rate of the experimental fish. The highest value of protein level and feed efficiency were observed in T4 at significant difference level (p< 0.05) than other treatments. It was concluded that fermentation of maize in fish feed has positive effects on the nutritional value of the feed. It is recommend that fermented maize can replace raw maize in fish feed diet for growth performance. KEYWORDS: Fermentation, yellow maize, Clarias gariepinus, Fish, Feed.
Resumo:
This study was conducted using 150 fish of Clarias gariepinus to investigate the growth performance and nutrient utilization of Clarias gariepinus fed five treatment diets containing varying inclusion level of fermented unsieved maize. The diets were grouped into CT, T1, T2, T3, and T4 with inclusion levels of 25%, 50%, 75%, and 100% of fermented unsieved maize respectively. Highest weight gain was recorded in T4 with value of 10.24 and lowest weight was recorded in CT with 9.17. High FCR were observed in T2 with value of 0.70 and lower value was observed in T4 with value of 0.62. While, T2, T3, and T4 have highest survival rates with values of 90% in each treatment CT and T1 recorded 80% and 70% respectively. There was a significant (p< 0.05) difference between the food conversion ratios treatment T4 with the best value and other treatments. There was a significant (p< 0.05) difference between the levels of fermented unsieved maize inclusion and the specific growth rate of the experimental fish. The highest value of protein level and feed efficiency were observed in T4 at significant difference level (p< 0.05) than other treatments. It was concluded that fermentation of maize in fish feed has positive effects on the nutritional value of the feed. It is recommend that fermented maize can replace raw maize in fish feed diet for growth performance.
Resumo:
Triglycerides, phospholipids and sarcoplasmic proteins fractions of white pomfret produced considerable amounts of thiobarbituric acid reactive substances (TBRS) on irradiation. Incubation of malonaldehyde with pomfret skin under aseptic conditions developed yellow pigmentation of the skin tissues, similar in spectral characteristics to those produced on irradiation of the skin.