46 resultados para winter warming
em Aquatic Commons
Resumo:
American pondweed ( Potamogeton nodosus Poir.) is commonly found in northern California irrigation canals. The purpose of this study was to test the hypothesis that exposure of American pondweed winter buds to dilute acetic acid under field conditions would result in reduced subsequent biomass.
Resumo:
The migratory population of striped bass (Morone saxatilis) (>400 mm total length[TL]) spends winter in the Atlantic Ocean off the Virginia and North Carolina coasts of the United States. Information on trophic dynamics for these large adults during winter is limited. Feeding habits and prey were described from stomach contents of 1154 striped bass ranging from 373 to 1250 mm TL, collected from trawls during winters of 1994-96, 2000, and 2002-03, and from the recreational fishery during 2005-07. Nineteen prey species were present in the diet. Overall, Atlantic menhaden (Brevoortia tyrannus) and bay anchovy (Anchoa mitchilli) dominated the diet by boimass (67.9%) and numerically (68.6%). The percent biomass of Atlantic menhaden during 1994-2003 to 87.0% during 2005-07. Demersal fish species such as Atlantic croaker (Micropogonias undulatus) and spot (Leiostomus xanthurus) represented <15% of the diet biomass, whereas alosines (Alosa spp.) were rarely observed. Invertebrates were least important, contributing <1.0% by biomass and numerically. Striped bass are capable of feeding on a wide range of prey sizes (2% to 43% of their total length). This study outlines the importance of clupeoid fishes to striped bass winter production and also shows that predation may be exerting pressure on one of their dominant prey, the Atlantic menhaden.
Resumo:
We analyzed the relationships between the larval and juvenile abundances of selected estuarine-dependent fishes that spawn during the winter in continental shelf waters of the U.S. Atlantic coast. Six species were included in the analysis based on their ecological and economic importance and relative abundance in available surveys: spot Leiostomus xanthurus, pinfish Lagodon rhomboides, southern flounder Paralichthys lethostigma, summer flounder Paralichthys dentatus, Atlantic croaker Micropogonias undulatus, and Atlantic menhaden Brevoortia tyrannus. Cross-correlation analysis was used to examine the relationships between the larval and juvenile abundances within species. Tests of synchrony across species were used to find similarities in recruitment dynamics for species with similar winter shelf-spawning life-history strategies. Positive correlations were found between the larval and juvenile abundances for three of the six selected species (spot, pinfish, and southern flounder). These three species have similar geographic ranges that primarily lie south of Cape Hatteras. There were no significant correlations between the larval and juvenile abundances for the other three species (summer flounder, Atlantic croaker, and Atlantic menhaden); we suggest several factors that could account for the lack of a relationship. Synchrony was found among the three southern species within both the larval and juvenile abundance time series. These results provide support for using larval ingress measures as indices of abundance for these and other species with similar geographic ranges and winter shelf-spawning life-history strategies.
Resumo:
Executive Summary: Observations show that warming of the climate is unequivocal. The global warming observed over the past 50 years is due primarily to human-induced emissions of heat-trapping gases. These emissions come mainly from the burning of fossil fuels (coal, oil, and gas), with important contributions from the clearing of forests, agricultural practices, and other activities. Warming over this century is projected to be considerably greater than over the last century. The global average temperature since 1900 has risen by about 1.5ºF. By 2100, it is projected to rise another 2 to 11.5ºF. The U.S. average temperature has risen by a comparable amount and is very likely to rise more than the global average over this century, with some variation from place to place. Several factors will determine future temperature increases. Increases at the lower end of this range are more likely if global heat-trapping gas emissions are cut substantially. If emissions continue to rise at or near current rates, temperature increases are more likely to be near the upper end of the range. Volcanic eruptions or other natural variations could temporarily counteract some of the human-induced warming, slowing the rise in global temperature, but these effects would only last a few years. Reducing emissions of carbon dioxide would lessen warming over this century and beyond. Sizable early cuts in emissions would significantly reduce the pace and the overall amount of climate change. Earlier cuts in emissions would have a greater effect in reducing climate change than comparable reductions made later. In addition, reducing emissions of some shorter-lived heat-trapping gases, such as methane, and some types of particles, such as soot, would begin to reduce warming within weeks to decades. Climate-related changes have already been observed globally and in the United States. These include increases in air and water temperatures, reduced frost days, increased frequency and intensity of heavy downpours, a rise in sea level, and reduced snow cover, glaciers, permafrost, and sea ice. A longer ice-free period on lakes and rivers, lengthening of the growing season, and increased water vapor in the atmosphere have also been observed. Over the past 30 years, temperatures have risen faster in winter than in any other season, with average winter temperatures in the Midwest and northern Great Plains increasing more than 7ºF. Some of the changes have been faster than previous assessments had suggested. These climate-related changes are expected to continue while new ones develop. Likely future changes for the United States and surrounding coastal waters include more intense hurricanes with related increases in wind, rain, and storm surges (but not necessarily an increase in the number of these storms that make landfall), as well as drier conditions in the Southwest and Caribbean. These changes will affect human health, water supply, agriculture, coastal areas, and many other aspects of society and the natural environment. This report synthesizes information from a wide variety of scientific assessments (see page 7) and recently published research to summarize what is known about the observed and projected consequences of climate change on the United States. It combines analysis of impacts on various sectors such as energy, water, and transportation at the national level with an assessment of key impacts on specific regions of the United States. For example, sea-level rise will increase risks of erosion, storm surge damage, and flooding for coastal communities, especially in the Southeast and parts of Alaska. Reduced snowpack and earlier snow melt will alter the timing and amount of water supplies, posing significant challenges for water resource management in the West. (PDF contains 196 pages)
Resumo:
A study/predation control program was conducted at the Hiram M. Chittenden Locks in Seattle, Washington from 20 December through 23 April 1986. The principal objectives were to document the rate and effects of predation on winter-run steelhead (Salmo gairdneri Richardson) by California sea lions (Zalophus californianus); to control and minimize predation in order to increase the escapement of wild winter-runs to the Lake Washington watershed; to evaluate and recommend potential long term procedures for control of steelhead predation; and to document the abundance and distribution of California sea lions in Puget Sound.
Resumo:
Codend selection of winter flounder (Pseudopleuronectes americanus) in 76-127 mm mesh codends was examined from experiments conducted in Long Island Sound during the spring of 1986-87. The results show a slightly larger size at selection than was found in earlier work as indicated by the selection factor, 2.31 in the present study compared with 2.2 and 2.24 from previous studies. Diamond mesh was found to have a length at 50% retention about 1 cm longer (Lso =22.6 cm), and a selection range (3.4 cm) about 1 cm narrower, than square mesh in 102-mm codends. Tow duration varied from 1 to 2 hours using 114-mm diamond mesh. As has been found in previous studies, tow duration and Lso are positively related, with I-hour tows averaging 24.6 cm and 2-hour tows averaging 26.6 cm. The importance of the slope of the selection curve was examined in yield-per-recruit analyses by comparing knife-edge and stepwise recruitment. In all mesh sizes, stepwise recruitment provides a more conservative estimate of yield in the presence of a minimum size limit. Differences in yield estimates between the two models were generally small (1-7%), except in the largest mesh size, 127 mm, where yield is overestimated by 10% when assuming knife-edge recruitment. (PDF file contains 16 pages.)
Resumo:
Rising global temperatures threaten the survival of many plant and animal species. Having already risen at an unprecedented rate in the past century, temperatures are predicted to rise between 0.3 and 7.5C in North America over the next 100 years (Hawkes et al. 2007). Studies have documented the effects of climate warming on phenology (timing of seasonal activities), with observations of early arrival at breeding grounds, earlier ends to the reproductive season, and delayed autumnal migrations (Pike et al. 2006). In addition, for species not suited to the physiological demands of cold winter temperatures, increasing temperatures could shift tolerable habitats to higher latitudes (Hawkes et al. 2007). More directly, climate warming will impact thermally sensitive species like sea turtles, who exhibit temperature-dependent sexual determination. Temperatures in the middle third of the incubation period determine the sex of sea turtle offspring, with higher temperatures resulting in a greater abundance of female offspring. Consequently, increasing temperatures from climate warming would drastically change the offspring sex ratio (Hawkes et al. 2007). Of the seven extant species of sea turtles, three (leatherback, Kemp’s ridley, and hawksbill) are critically endangered, two (olive ridley and green) are endangered, and one (loggerhead) is threatened. Considering the predicted scenarios of climate warming and the already tenuous status of sea turtle populations, it is essential that efforts are made to understand how increasing temperatures may affect sea turtle populations and how these species might adapt in the face of such changes. In this analysis, I seek to identify the impact of changing climate conditions over the next 50 years on the availability of sea turtle nesting habitat in Florida given predicted changes in temperature and precipitation. I predict that future conditions in Florida will be less suitable for sea turtle nesting during the historic nesting season. This may imply that sea turtles will nest at a different time of year, in more northern latitudes, to a lesser extent, or possibly not at all. It seems likely that changes in temperature and precipitation patterns will alter the distribution of sea turtle nesting locations worldwide, provided that beaches where the conditions are suitable for nesting still exist. Hijmans and Graham (2006) evaluate a range of climate envelope models in terms of their ability to predict species distributions under climate change scenarios. Their results suggested that the choice of species distribution model is dependent on the specifics of each individual study. Fuller et al. (2008) used a maximum entropy approach to model the potential distribution of 11 species in the Arctic Coastal Plain of Alaska under a series of projected climate scenarios. Recently, Pike (in press) developed Maxent models to investigate the impacts of climate change on green sea turtle nest distribution and timing. In each of these studies, a set of environmental predictor variables (including climate variables), for which ‘current’ conditions are available and ‘future’ conditions have been projected, is used in conjunction with species occurrence data to map potential species distribution under the projected conditions. In this study, I will take a similar approach in mapping the potential sea turtle nesting habitat in Florida by developing a Maxent model based on environmental and climate data and projecting the model for future climate data. (PDF contains 5 pages)
Resumo:
The likely response of freshwater plankton to the direct and indirect effects of sustained global warming are summarized. The increase in CO2 posited by climatologists will have a direct effect on many biological processes, and an even more important indirect effect on the global climate. Lake plankton populations are relatively well buffered against sudden fluctuations in temperature but can react in unexpected ways to seasonal changes in the wind speed, with effects on seasonal growth and succession of plankton. The direct
Resumo:
Since 1967 data have been collected on the distribution of fish caught in a 24 hour period during the winter angling season. The present study on activity periods is based on data from nearly 2000 perch collected between 1967 and 1971. The distribution of number of fish caught during 24 hrs during December - May was studied. Of the total, the most productive period was found to be between 0600 - l600 hrs., with the peak period occurring between 0800 - 1000 hrs. The present data together show that during the darkest months of the year, the perch is only active in the mid-day period. Throughout the whole winter fishing season, activity only occurs during the time between surise and sunset.
Resumo:
The winter eggs of Daphnia pulex, after passing safely through the winter , develop and hatch in the spring, multiplying by themselves, while some males emerging among them with the changes in environment produce fertile eggs, which are universally known as winter eggs . This study researches the factors governing the development of winter eggs through experiments.
Resumo:
Observations are reported on the content of organic matter in the Moscow region in 1941. Some data is given on alkalinity, oxygen content and colourisation of the rivers.