5 resultados para transformation path

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hurricane Isabel made landfall as a Category 2 Hurricane on 18 September 2003, on the North Carolina Outer Banks between Cape Lookout and Cape Hatteras, then coursed northwestward through Pamlico Sound and west of Chesapeake Bay where it downgraded to a tropical storm. Wind damage on the west and southwest shores of Pamlico Sound and the western shore of Chesapeake Bay was moderate, but major damage resulted from the storm tide. The NOAA, National Ocean Service, National Centers for Coastal Ocean Sciences, Center for Coastal Fisheries and Habitat Research at Beaufort, North Carolina and the Center for Coastal Environmental Health and Biomedical Research Branch at Oxford, Maryland have hurricane preparedness plans in place. These plans call for tropical storms and hurricanes to be tracked carefully through NOAA National Weather Service (NWS) watches, warnings, and advisories. When a hurricane watch changes to a hurricane warning for the areas of Beaufort or Oxford, documented hurricane preparation plans are activated. Isabel exacted some wind damage at both Beaufort and Oxford. Storm tide caused damage at Oxford, where area-wide flooding isolated the laboratory for many hours. Storm tide also caused damage at Beaufort. Because of their geographic locations on or near the open ocean (Beaufort) or on or near large estuaries (Beaufort and Oxford), storm tide poses a major threat to these NOAA facilities and the safety of federal employees. Damage from storm surge and windblown water depends on the track and intensity of a storm. One tool used to predict storm surge is the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model of the NWS, which provides valuable surge forecasts that aid in hurricane preparation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comparison between Galton equation and preston normal logarithms models allowed an empirical reconstitution of probits tables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The status of fish stocks in a water body at any one time is a function of several factors affecting the production of fish in that water body. These include: total number (abundance) and biomass(weight) present, growth (size and age), recruitment (the quantity of fish entering the fishery) including reproduction, mortality which is caused by fishing or natural causes, Other indirect factors of major importance to the status of the stocks include production factors (water quality and availability of natural food for fish), the life history parameters of the different species making up the stocks (e.g. sex ratios, condition of the fish, reproductive potential (i.e. fecundity) etc), Changes in fish stocks do occur when any of the above listed factors directly influence aspects of growth, reproduction and mortality and therefore, numbers and standing stock (biomass). In the exploited fisheries, major research concerns regarding stocks relate to the listed factors especially: estimates of stock abundance/biomass, the quantity of fish being caught,where the fish are caught, which species are caught (relative abundance)when the fish are caught, how the fish are caught. The balance between stock abundance and amount of fish caught provides the basis for intervention. Due to the diverse characteristics of the physical water environment, fishes are in general, not evenly distributed throughout a water body. Shallow and vegetated areas tend to support higher abundance and diversity of fish species. In addition, seasonal variations in fish abundance are so strong that fluctuations in catch have to be expected at fish landings.