22 resultados para team cohesion
em Aquatic Commons
Resumo:
This volume summarizes the results of three workshops organized by the PICES-GLOBEC Climate Change and Carrying Capacity Program that were held just prior to the PICES Seventh Annual Meeting in Fairbanks, Alaska, in October 1998. These workshops represent the efforts of the REX, MODEL, and MONITOR Task Teams to integrate the results of national GLOBEC and GLOBEC-like programs to arrive at a better understanding of the ways in which climate change affects North Pacific ecosystems. (PDF contains 91 pages)
Resumo:
A workshop was convened by the MODEL Task Team and held June 23-28, 1996, in Nemuro, Japan, to develop the modeling requirements of the PICES Climate Change and Carrying Capacity (CCCC) Program. It was attended by over 40 scientists from all member nations of PICES. The principal objectives of the workshop were to • review the roles and limitations of modeling for the CCCC program; • propose the level of modeling required; and • provide a plan for how to promote these modeling activities. Secondary activities at the workshop included organisational meetings of the Regional comparisons (REX) and Basin-scale experiment (BASS) Task Teams, and a symposium by Japan-GLOBEC on “Development and application of new technologies for measurement and modeling in marine ecosystems.” This report serves as a record of the proceedings of this workshop. (PDF contains 89 pages)
Resumo:
In this essay, three lines of evidence are developed that sturgeons in the Chesapeake Bay and elsewhere are unusually sensitive to hypoxic conditions: 1. In comparison to other fishes, sturgeons have a limited behavioral and physiological capacity to respond to hypoxia. Basal metabolism, growth, and consumption are quite sensitive to changes in oxygen level, which may indicate a relatively poor ability by sturgeons to oxyregulate. 2. During summertime, temperatures >20 C amplify the effect of hypoxia on sturgeons and other fishes due to a temperature*oxygen "squeeze" (Coutant 1987)- In bottom waters, this interaction results in substantial reduction of habitat; in dry years, nursery habitats in the Chesapeake Bay may be particularly reduced or even eliminated. 3. While evidence for population level effects by hypoxia are circumstantial, there are corresponding trends between the absence of Atlantic sturgeon reproduction in estuaries like the Chesapeake Bay where summertime hypoxia predominates on a system-wide scale. Also, the recent and dramatic recovery of shortnose sturgeon in the Hudson River (4-fold increase in abundance from 1980 to 1995) may have been stimulated by improvement of a large portion of the nursery habitat that was restored from hypoxia to normoxia during the period 1973-1978. (PDF contains 26 pages)