3 resultados para sustainable urban areas
em Aquatic Commons
Resumo:
A survey of the River Lune using River Habitat Survey (RHS) was carried out at 103 sections in February/March 99, to which were added 37 sites surveyed between 1994 -1996. Summary statistics were produced on the distribution and extent of flow features (e.g. riffles, pools, rapids etc.), substrate types, tree and associated features and bank profiles. Information on land-use and management was also included in the analyses. A Habitat Modification Score (HMS) describing the level of habitat modification was derived for each site and compared to the whole reference network and to rivers of similar types in Britain. The HMS shows that more than 70% of the sites on the catchment are predominantly unmodified and very few sites are significantly modified. Highly modified sites are concentrated in the urban areas and on the tributaries.
Resumo:
Although other research studies on areas such as the physical-chemical, nutrients and phytoplankton status of Lake Kyoga systems have been given a lot of attention (e.g. Mungoma 1988 and NaFIRRI 2006), efforts to determine the pollution status of this system, especially by heavy metals as one of the worldwide emerging environmental problems, is still limited. Many trace metals are regarded as serious pollutants of aquatic ecosystems because of their persistence, toxicity and ability to be incorporated into food chains (Mwamburi J., and Nathan O.F., 1997). Given the rapid human population growth and the associated economic activities both within the rural and urban areas in Uganda, such fish production systems are becoming very prone to various kinds of pollution including that by heavy metals. Anthropogenic factors such deforestation, use of chemicals and dumping of metallic products, spillages of fuels from outboard engines and many others and or natural processes involving atmospheric deposition by wind or rain, surface run-offs and streams flows from the catchment introduces heavy metals into the lake environment,.
Resumo:
Tilapia (Oreochromis spp.) consumption is limited due to its strong muddy odour and the difficulty of processing. In addition, consumption of tilapia is minimal in urban areas because of the low availability. There are no processed market products of tilapia available in Sri Lanka. Therefore, this study was designed to develop a new marinade for tilapia and to evaluate the shelf life of the product. Twelve different treatments of varying amounts of vinegar, salt, chili powder, white pepper and garlic powder were applied to filleted tilapia, and three best treatment combinations were selected using a sensory evaluation test. Processed tilapia was stored in the freezer at -4°C. Treated samples were subjected to evaluation of sensory profile: taste, odour, colour, texture and overall acceptability. Analysis of the shelf life was carried out by using the total plate count, faecal coliform test, acidity and pH at weekly intervals. Results revealed that the third treatment (vinegar 75 ml, salt 5 g, chili powder 5 g, white pepper 5 g and garlic powder 5 g) was best in terms of colour, texture, odour, taste and the overall acceptability according to the estimated medians (6, 6, 6 and 6.33 respectively). There was no significant difference between the first and the third treatment in terms of odour and overall acceptability. There was no significant difference between the three vacuum packed treatments for acidity and pH. Acidity and pH of the three treatments were at an acceptable level, which was below pH 5.3 and above 1.95% acidity. Average bacterial count was 10 colonies and 1.33x10 super(6) colonies respectively in vacuum packed treatments and bottled samples after one week. The acceptable level of bacterial colonies is 1.00x10 super(5). Vacuum packed treatments showed a one month shelf life. In conclusion, marinades can be developed from tilapia with a pleasant taste and acceptable texture.