2 resultados para structural Features
em Aquatic Commons
Resumo:
On the basis of observation data of water temperature and salinity the mean seasonal geostrophic circulation in open region of the South China Sea (SCS) was computed by the dynamic method relative to the 800 decibar reference surface. The results of computation let go to following notices: In both main monsoons (winter and summer) there are two main geostrophic eddies: the anticlockwise eddy in the northern and northwestern part, and the clockwise eddy in the southern part of the SCS with corresponding divergent and convergent zones. The main frontal zones go along the middle latitudes of the sea from the southern continental shelf of Vietnam to the area west of Luzon Island. The strength and stability of the current in winter are higher than in summer. The Kuroshio has an enough strong branch intruding into the SCS through Bashi Strait in winter creating in the sea the water structure similar to that of the Northwest Pacific subtropical and tropical regions. In summer the Kuroshio water can intrude directly only into the area southwest of Taiwan.
Resumo:
Spatial pattern metrics have routinely been applied to characterize and quantify structural features of terrestrial landscapes and have demonstrated great utility in landscape ecology and conservation planning. The important role of spatial structure in ecology and management is now commonly recognized, and recent advances in marine remote sensing technology have facilitated the application of spatial pattern metrics to the marine environment. However, it is not yet clear whether concepts, metrics, and statistical techniques developed for terrestrial ecosystems are relevant for marine species and seascapes. To address this gap in our knowledge, we reviewed, synthesized, and evaluated the utility and application of spatial pattern metrics in the marine science literature over the past 30 yr (1980 to 2010). In total, 23 studies characterized seascape structure, of which 17 quantified spatial patterns using a 2-dimensional patch-mosaic model and 5 used a continuously varying 3-dimensional surface model. Most seascape studies followed terrestrial-based studies in their search for ecological patterns and applied or modified existing metrics. Only 1 truly unique metric was found (hydrodynamic aperture applied to Pacific atolls). While there are still relatively few studies using spatial pattern metrics in the marine environment, they have suffered from similar misuse as reported for terrestrial studies, such as the lack of a priori considerations or the problem of collinearity between metrics. Spatial pattern metrics offer great potential for ecological research and environmental management in marine systems, and future studies should focus on (1) the dynamic boundary between the land and sea; (2) quantifying 3-dimensional spatial patterns; and (3) assessing and monitoring seascape change.