4 resultados para strong convergence

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coastal storms, and the strong winds, heavy rains, and high seas that accompany them pose a serious threat to the lives and livelihoods of the peoples of the Pacific basin, from the tropics to the high latitudes. To reduce their vulnerability to the economic, social, and environmental risks associated with these phenomena (and correspondingly enhance their resiliency), decision-makers in coastal communities require timely access to accurate information that affords them an opportunity to plan and respond accordingly. This includes information about the potential for coastal flooding, inundation and erosion at time scales ranging from hours to years, as well as the longterm climatological context of this information. The Pacific Storms Climatology Project (PSCP) was formed in 2006 with the intent of improving scientific understanding of patterns and trends of storm frequency and intensity - “storminess”- and related impacts of these extreme events. The project is currently developing a suite of integrated information products that can be used by emergency managers, mitigation planners, government agencies and decision-makers in key sectors, including: water and natural resource management, agriculture and fisheries, transportation and communication, and recreation and tourism. The PSCP is exploring how the climate-related processes that govern extreme storm events are expressed within and between three primary thematic areas: heavy rains, strong winds, and high seas. To address these thematic areas, PSCP has focused on developing analyses of historical climate records collected throughout the Pacific region, and the integration of these climatological analyses with near-real time observations to put recent weather and climate events into a longer-term perspective.(PDF contains 4 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At decadal period (10-20 years), dynamic linkage was evident between atmospheric low pressure systems over the North Pacific Ocean and circulation in a Pacific Northwest fjord (Puget Sound). As the Aleutian low pressure center shifts, storms arriving from the North Pacific Ocean deposit varying amounts of precipitation in the mountains draining into the estuarine system; in turn, the fluctuating addition of fresh water changes the density distribution near the fjord basin entrance sill, thereby constraining the fjord's vertical velocity structure. This linkage was examined using time series of 21 environmental parameters from 1899 to 1987. Covariation in the time series was evident because of the strong decadal cycles compared with long-term averages, interannual variability, and seasonal cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Rio de la Plata estuary is one of the largest estuarine environments of South America. It is characterized by a two-layer vertical salinity distribution and the existence of water masses convergence zones (fronts). Oceanographic scenario greatly influence the biology of the planktonic organisms that live in the water column, the benthic organisms that inhabit the soft sediment bottoms of the estuary, and the fishes, which show a differential degree of penetration into the diluted water of the estuary. Short and frequent events of strong weastward winds ('sudestada') alter completely the oceanographic conditions greatly influencing the especies ecology. Biological production of the estuary is high, and most of their organisms have a marine heritage.