4 resultados para stimulated Raman adiabatic passage

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many of British rivers hold stocks of salmon (Salmo salar L.) and sea trout (Salmo trutta L.) and during most of the year some of the adult fish migrate upstream to the head waters where, with the advent of winter, they will eventually spawn. For a variety of reasons, including the generation of power for milling, improving navigation and measuring water flow, man has put obstacles in the way of migratory fish which have added to those already provided by nature in the shape of rapids and waterfalls. While both salmon and sea trout, particularly the former, are capable of spectacular leaps the movement of fish over man-made and natural obstacles can be helped, or even made possible, by the judicious use of fish passes. These are designed to give the fish an easier route over or round an obstacle by allowing it to overcome the water head difference in a series of stages ('pool and traverse' fish pass) or by reducing the water velocity in a sloping channel (Denil fish pass). Salmon and sea trout make their spawning runs at different flow conditions, salmon preferring much higher water flows than sea trout. Hence the design of fish passes requires an understanding of the swimming ability of fish (speed and endurance) and the effect of water temperature on this ability. Also the unique features of each site must be appreciated to enable the pass to be positioned so that its entrance is readily located. As well as salmon and sea trout, rivers often have stocks of coarse fish and eels. Coarse fish migrations are generally local in character and although some obstructions such as weirs may allow downstream passages only, they do not cause a significant problem. Eels, like salmon and sea trout, travel both up and down river during the course of their life histories. However, the climbing power of elvers is legendary and it is not normally necessary to offer them help, while adult silver eels migrate at times of high water flow when downstream movement is comparatively easy: for these reasons neither coarse fish nor eels are considered further. The provision of fish passes is, in many instances, mandatory under the Salmon and Freshwater Fisheries Act 1975. This report is intended for those involved in the planning, siting, construction and operation of fish passes and is written to clarify the hydraulic problems for the biologist and the biological problems for the engineer. It is also intended to explain the criteria by which the design of an individual pass is assessed for Ministerial Approval.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report presents the first attempt at a national assessment of an Environmental Quality Standard (EQS) for dissolved oxygen (DO) in estuaries with the objective of allowing the passage of migratory salmonids. Under the Control of Pollution Act, Water Authorities and River Purification Boards have powers to control discharges to estuaries and need to define an EQS for the calculation of consent conditions. The object of any such standards is to permit the existence of good quality salmonid fisheries with only very occasional restrictions to the passage of fish. The report gives brief summaries of the DO regime in estuaries, the oxygen requirements of salmonids, and of tentative standards proposed by various authorities. These standards are then compared with DO and fishery data from UK estuaries, provided by the appropriate regulatory authorities. It concludes that a minimum annual lower 95-percentile of 5.0 mg/1 will meet the objective in most estuaries, and that a lower value of 3.0 mg/1 will permit the establishment of a more restricted fishery. However, more stringent standards may be needed in estuaries containing high concentrations of toxic pollutants. containing high concentrations of toxic pollutants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): Measurements of spatial and temporal distributions of carbon dioxide concentration and carbon-13/carbon-12 ratio in the atmosphere suggest a strong biospheric carbon sink in terrestrial ecosystems. Quantifying the sink, however, has become an enormous challenge for Earth system scientists because of great uncertainties associated with biological variation and environmental heterogeneity in the ecosystems. This paper presents an approach that uses two driving parameters to bound terrestrial carbon sequestration associated with an increase in carbon dioxide concentration.